
I

Apple· Il

•
•
•
•
•

Apple IIGs·· Firmware Reference

• Al'i>LI::" COMPl.:1"ER, [NC.

Copyright© 1987 by Apple
CompuH'..:r, Inc_

/'i 11 rLght.s. rcse rved. !'>lo pan of
this publtc.alion mav b~ repro­
duced. swred iri a reLrjeval

s~·stem, or transmitted, in any
fmm or by any means, mc:ch.an ·
1c::1l, electronic, photocopytng,
recording, or othe rw LSC::, wi lh ou l
prLor wrincn pennission of
Appl1.: Cumpu\er, Inc . Printed in
Lhe L"rtiled Sta[es of America .

. ".pp!e, lhc Apple logo,
AppkT~lk, Disk I!, DuoDisk,
Lase r\X' rile r, and P rn DOS a re
registered trademarks of Apple
Computer, Inc.

ii. pple Desk Top Bus,
AppleMouse, Apple: IIGS,
\fadntosh, SA.:.">;E, and Li riiDisk
are trademarks of Apple
Computer, Inc.

ITC Garamond, ITC Avant Garde
Gothic, amJ lTC Zapf Dingbar..s
are rcgi.~tcrc~ irademarks of
I me rnation.al Type fa cc
Corpora.1ion.

Microsoft is a re gi s te red trade:.
mark of ,\·ticrosofl Corporation.

Po ~TS cru PT i_5 a lra de mark of
Adobe Systems Incorporated.

Sim u fta neou s !y pu bli.shed in the
United St.ate$ and Canada.

ISBN 0-201-17744-7
ABCDEFG!ii J-D0"'8987
First priming, May 1987

WARRANTY INFOR.'1-IATION

All. IMPLIED 'WARRANTIES 0
THIS M.A..."dTAL, INCLUDING
l.a.t.PUED WARRANTIES Of'
ME RC HANT AtilllTY A."'ID
FITNESS FOR. A P:AB.nClJL\R
PURPOSE. ARE UMITED rN

DL:n.ATION TO NINETY {90)
DAYS f ROM THE DATI! OF THE
ORIGL"'lAL RETAIL PURCHAo;E
OF THIS PRODUCT.

Evi:>n though Apple has revicw~d
thi~ m;;i.nual, APPLE MAKES NO
W-1\RRA.."in'Y OR R.EPRESENTA·
TION, EJTIIER EXPRESS OR
ll\.UJLIED, WITH RESPECT TO
THIS MA!'•fUM., ITS QUALITY •
ACCURACY, MERCHANTMm.ITY,
OR HT!'\ESS FOR A PARTICULAR
PURPOSE. AS A RESULT. THIS
MAN UAL IS SOID y AS IS.'' AND
YOU, THE PURCHASER. ARE
ASSOMING THE ENTIRE RISK AS
TO ITS QUAJJIT AND
ACCURACY.

~N NO EVENT Will APPLE BE
LIABLE FOR DJR.ECT, INDIRECT,
SPECIAL, INCIDENTAL. OR
CONSEQUENTIAL DA.\lAGES
RES(..1LTING FROM ANY DEFECT
OR lNACCUKACY IN TillS
MANUAJ., cv-cn if advised of the
pas&~b i I it y of .su~h dam.:.ges .

THE WARRANTY AND REMEDIES
SET FOK TH ABOVE ARE E."<CW­
:~HVE A.ND IN Lt.Ell Of AIL
OTHERS, OR.Al. OR WRllTEN.
EXPRESS OR IM PUEO. No Apple
dealer, agent, or employee is
aucnoriocd to make an;.· modifica­
tion, exlen!>ion, or addition to t.h i.s
warranty.

Some state.!i. do not a How the exclu -
s ion or limitation of im pl icd wamm­
ti~~ or I i:I biHty for inciderital or
consec.11.Jcntfall da mage.s., .so I he
:above Hmc[;)tion or exdusion may
n~ :ippl y lo you. TMs warrarn y
give~ you i>pt;=cific legal rjght.s, and
~rou may also ha vc oilier rights
wh ich vary from .state to stale.

Contents

Figures and ra bles xm

Preraeo xvii
About th~s manual xv ii
W'hal this rn a nua l contajns x\•ili

Chapter l Ova l'\l l•w 1

A word a bout other Apple 11 GS firmware 2.
App!e UGS Toolbox 2
Applcsoft 13ASIC 2
AppleTalk 3
Diagnos1 .. k routines 3

The role of firmware in !.he Apple IIGS system 3
Levels of program operation ii
Apple IIGS fimtwarc 4

Syst~m Monitor firmware 4
Video firmware 5
Se- ri a I-porl firm ware S
Di.~k I1 .51.l p port 5
SmanParl firmware 5
J nlerru pt-handler fL m1 w-are 6
1\ pp te Dcsku~p Ru s mi c mcomrollcr 6
Mouse fi rmw arc 6

Chapter 2 Notes for Programmers 7

Int rodu CtLon lO t.he Apple II GS 8
Microprocessor [ca lures S

Microprocessor modes 9
Execution speeds 9
E :i::pandc d rnem ory 9

Super Hi-Iles display 9
Digcrnl .-;aund synthesizer 10
Delachcd keyboard with Apple lJcskTop Bus 10
Bui[1-in 1/0 l 1

Compati blc slots and game l/O con neclo rs I 1

Iii

Iv Contents

Environmem for the firmware routines 11
Selling up the system 12

Save your environment 12
Gel into bank $00 12
Set the D register to $0000 l 2
Set the OBR to $00 13
Save the value of the native-mode stack pointer 1.~
Selecl emulation mod{;! 14

Returning lo native mode 14
Restore c.he native-mode stack pointer l·i
Restore your environment 14

Q!::..1"!~! ~~~~jr~mcnts for cmulaLion-mode code 15

Cautions about changing the environment] 5
Stack and direct page 15
Data bank register~ and e, m, and x !lags 16
Speed· and Shadow-register changes 16
Language-card changes 16

General informalion 16
Apple !IGS interrupts 16
Bool./scan sequence l 7
Program bank register 17
Exchanging lhe Band A registers, XBA 18

Chapter 3 System Monitor Firmware 19

lnvoking I.he Monitor 20
Mnnitor command syntax 21
Monitor command types 21
Monitor memory commands 25

Examining memory 26
Examining consecutive memory locations 27
Changing memory contents 28

Changing one byte 28
Changing conseculive memory locations 29
ASCII input mode 30
ASCII fiher.> for stored data 31

Moving data in memory 31
Comparing data in memory 33
Fllling a memory range 34
Searching for byte_o; in memory 34

Registers and flags 35
The cnvironmem 36
Examining and changing registers and flags 36
Summary of register- and flag-modification command-; 38

Miscellaneous Monitor commands 39
Inverse and normal display 39
Working wilh. lime and date 40
Redirecting input and outpu l 40
Changing I.he cufsor character 41
Converting hexadecimal and decimal numbe.rs 41
Hexadecimal malh 4 2
A Too] locator call 43
Back lO BASIC 43

Special tricks with lhe Monitor 44
Multiple commands 14
Filling memory 45
Re pealing wmrnands 46
Creating your own commands 47

Machine-language programs 48
Running a program in bank zero 49
Running a program in olher banks of rnc mory 50
Resumi.ng program operation 50
Stepping through or tracing program execution 50

The mini-assembler 51
Starting the mini· a.sse mble.r 51
Using the mini- assembler 51
MinI&a-5<5embler instruction formats 54

·111e Apple llGS tools 55
The disassembler 55
Su rnma ry of M oni tar insuu nions 5 7

Chapter 4 Vfdeo Firmware 69

Standard l/O I inks 70
Standard input routines 71

RD KEY input su brou line 71
KEVIN and BASicrN inpul subroutines 71

Escape codes 72
Cursor control 72

GETI.N input s.u broucirie 7 4
Edlli ng 'i'tt'ith G ETI.N 75

Keyboard input buffering 75
Standard ou tpul routines 76

COUT and BASTCOUT subroutines 76
Control characlers with COUTl and C3COUT1 76
lnverse and flashing t.exl 78

Other firmw;ne 1/ 0 routines 79
The text window 80

Contents v

vi Contents

Chapter 5 Serlal ·Port Flrrnworo 81

Compa~ibiHly 8:!
Operating modes 83

Printer mode 83
Communicalions mode 83
Term~nal rnode 83

Handshaking 84
Hardware, DTR and DSR 84
Software, XON and XOFF 85

Operating commands 86
The com rnand cha ract.c r 87
Command st.rings 87
Commands u sefu 1 in prinler and communica t ~ofl5 mod.es 88

Baud rate, nB 88
Data format, n D 88
Parity, nP 89
Line length, ru"\J 89
Enable line forma lting, CE and CD 89
Ha n~haking protocol, XE and XD 89
Key boa.rd input, PE and FD 90
Automal.k line feed, LE and LD 90
Reset the serial-pon firm ware, R 90
Supprest> conuol characters, Z 90

Command~ u.~d ul in commu nicati oru. mode 91
Echo !:haracters to the (>c:reen, EE and ED 91
Mask line feed in, ME and MD 91
Input buITcring, BE and BD 91
Terminal mode, T and Q 91
Tab in 13ASIC, AE and AD 92

Programming with sed:;il -pml firmware 92
BASJ C interfa cc 9 3
Pascal protocol for assembly language 93

Error handling 95
Bu ff erlng 95
1 nterru pl notification 96
Back.ground prinl[ng 97

Recharge routine 98
Extended interface 99

Made co nlro I ca 11~ 100
GeLJi.1odeBits 100
SecModeBits 100

Buffcr-Rllll'lil.gement caUs 101
GellnBuffer 101
GelOutBuFfer 101
cllnBuffcr 102

SctOutBuffer 102
Flushl nQueue 102
flushOutQueue 102
InQStat.us 103
OulQSlalUs 103
Se.ndQucuc 103

Hardware conttol call5 104
GetPon:Scat 104
GctSCC 104
SetSCC 105
GerDTR 105
Set.DTR 105
Gellnllnfo 105
Setlntlnfo 106

Chapter 6 Dl$k H Suppo'l't 10,9

tartup 112

Chapter 7 Smor1Pol'I Firmware 113

local.i ng Smart.Pon 114
Locating lhe dispatch address 115
SmarlPort call para meters 116
SmartPort aissi Rnmen t of unil m.nnbe.rs 117

Allocation of device unil numbers l l
Issuing a call to SmanPort 120
Gener1c S martPon calls 12 l

StanJ!i 121
Required parameterg 122
SmanPorl ddver status 125
Po.ssibl e e rrors 125

Rea.cl.Block 125
Required parameters 126
Possible errors l 26

W rlceBlock 12. 7
Required parameters 127
Possible errors 127

Forma 128
Formal call implementation 128
Required parn meters 128
Possible error 128

Contents vtr

vllr Contl.iln.ts

Control 12.9
Required parameters 129
Possible errors 130

Jnil 130
Required parameters 130
Poss ~ble c rrors 130

Open 131
Rcqu ired paramele: r.> 131
Poss ib.le errors 131

Close 131
Required parameters 132
PossibJe error8' 132

Read 132
Required pararnete rs 133
Possible errors 133

Write 134
Required paramelen, l 34
Possible errors 135

Device-spcdfic SmartPon calls 138
SmartPort calls specifi<: to Apple 3-5 dLsk drive 138

Eject 138
SetHook 138
Read Address Field 139
Write Dala Field 139
Seek 139
r'ormat 139
Wriie Track 139
Verify 140
ResetHook 140
Set.Mark 140
Re::;e:tM:ark 141
SetSides 141
Setr merlea ve 141

SmanPort calls specific to UniDisk 3.5 112
Eject 142
Ex.erute 14 2.
SetAddre.'ls 143
Download 143
U ni.DiskStat 14 3

Un iDisk 3. 5 i ntc rna1 functions 144
Mark table 141
Hook table 145

UruDisk 3. 5 internal routines 146
Rd.Addr 146
ReadD:ua 146
Wrii:eDaLa 147
Seek 147
Format 147
W~iteTrk 148
Verify 148
Vector 149

Memory a lloC3 lion 150
ROM disk driver 152

Installing~ ROM disk driver 152
Passing parameters lo a ROM disk 152
ROM organization 154

Summary of SmanP on error codes. 1 S6
The Smart.Pon. bus 157

How SmanPort assigns unit number 157
SmartPon.-Dlsk TI imeraelion l SS
Other considerations 15
Extended and standard command packets 159
SmartPort bu.s flow of operal.ions 159

Ch apt r 8 In 1wrupt-Han d lar Fhmwgfe 169

Whal i.s a.n in~errupt? 171
The built-in interrupt handler 172
Summary of sys.tern interrupts 175

Interrupt vectors 177
Interrupt priorWes 177

RESET 178
NMI 178
ABORT 179
COP 179
BRK 179
IRQ 180

Environment. handling for interrupt processing 181
Saving the current cnvironmenl 181
Going lO the inr.errupt environment 182
Restoring the origtnal environment 1 82

Handling Break LnsLructions 183
Apple UGS mouse imerrupt.5 183
Serial-porl lntcrrupl notificatLOn 183

Contents Ix

x Contents.

Chapter 9 Apple Desklop Bus Microc:ontroller 185

AD B mi croc{m ~roller commands 188
Abort, $01 J 88
Reset Keyboard Microconlroller, 502 188
Flush Keyboard Fuffer, $03 188
Set Modes, $04 189
Clear Modes, $05 189
Scl Configuration Rytes, 506 190
Sync, $07 191
Write Mkrocontroller Memory, .$08 19t
Read Mrcrocormoller Memory, $09 191
Read Modes Ryte, $0A 191
Read Configuration Byte:>, 50B 192
Read and Oear Error Byte, $,)C 192
Get Version Number, SOD 192
Read Available Characlcr Sew;, SOE 193
Read Avatlable Keyboard Layouk~. $OF 193
Reset the S~tern, $10 193
Send ADli Keycode, .i11 193
Reset ADB, $40 191
Receive Byte~. $ 48 194
Tran.smil num Uytcs, .H9- S1F 194
Enable Device SRQ, $50--$5f 19~
Flush Device Buffer, $6o- S6F 195
Disable Device SRQ, 570-$7F 195
Transmit Two Byte5, .$80-SBF 195
Poll Oevi('.e, $CO--$ FF 195

Micm·conl roller status byte 196

Chapterl 0 Mouse Firmware 197

Mou5e position data t99
Register addresses-firmware on1y 200
Reading mouse position dam- firm"\Vare only 200
Position clamps 20 l

L1sing the rnnuse firmware 202
Firmware entry example using assembly language 202
Firmware entry example using BASlC 203
Re3ding buuon 1 .st.a tus 20'1

Mouse programs in BASIC 2o6
Mouse.Move program 206
Mouse.Draw program 207

Summary of mouse firmwa. re calls 209

Pasca I calls 210
Pinit 210
PRead 210
PWrite 210
PSlallL'> 210

A.ssembly-language calls 21 I
SETMOL"SE, SCii 12 211
SERVEMOUSE, SC4 I3 212
RE..A.DMOUSE, $C4l4 212
CLEARM:OlJSE, $C415 212
POSMOUSE, $C-116 213
CU..VfPHOlJSE, $417 213
HOMEMOUSE, $418 214
IN11M0LiSE, 5419 214

Appendix A ~oadmap to tho Apple ITQs 1echnlcol Manuals 215

The int.rodu c lory manu.aL"> 218
The tcchnical introduction 218
The programmer's iniroduction 2.18

The machine rd erence ma nu a.Is 219
The hardware reference manual 219
The firm ware reference manual 219

The: toolbox re Ference manuals 219
1ne programmer's workshop reference manual 2.20
The prngrarnnung-language reference m<'.lnuals 220
The operating-system reference manuals 221
The all-Apple manuals 221

Appendix B Firmware ID Byt•• 222

Appendix C ftrmware Entry Points In :e ank $00 224

Appendix D Vectort 258

Bank $00 page 3 vector.; 259
Bank 500 page C3 rou lines 26o
Bank SOO page Fx veclor.s 262
Bank $EJ vectors 264
JRQ.APTALK and lRQ.SERlAL vectors 266
I [~Q.SCAN through I [tQ.OTHER vectors 267
TO\VlUTEBH througJ1 MSGPOINTER vectors 272

Contents xi

Appendix E SoH Switches 276

Appendix F Dlsassamblor/Mlnl·Ass.embler Opc:od" 293

Appendii: G The Control Panel 299

Canlrol Panel parameters 299
Printer port 300
Modem port 301
Display 302
Sound 303
Speed 303
RAM: djsk 303
SlolS 304
Options 304
Clock 306
Quit 3o6

Banery-powered RAM 306
Conlrol Pane1 ac power-up 307

Appendix H Banks $ED and $ E 1 308

xi I Contents

Using banks $Efl and $ E 1 310
Free .spa'e 310
Language-card area 310
Shadowing 310

Glossary 311

Index 321

Figures and tables

Chapter 1 ,Ove rv lew

Plgure l-1 Levels of program operation 4

C apter 2 Notes for Programmers 1

Figure 2-1 Bom-f ilure screen 17
Figure 2-2 Accumulator for, mul tion 3nd nativ modes 18
Table 2-1 Super Hi-Res graphic modes 10

Chapter J Systam Monitor Firmware I 9

Table 3-1 Mrmitor commands grouped by lype 23
Table 3'-2 Commanc.1:5 for viewing and modif ing memory 25
1'a ble 3· 3 Registers and flags 35
Table 3-4 Commands for viewing and mcx.Mying registers 37
Table 3'-5 Miscellancou Momtor commands 39
Table 3-6 Commands for program execution

and debuggin 48
Table 3-7 Mini-assembler addr s formats 54
Table 3-8 Opcodes affected in imrn diate mode 5

C apt r 4 Video Rrmware 69

Escape codes and their function.~ 73
Prompt character. 74

Table 4-1
Table '1 -2
Table 4-_
Table 4-4
Table '1-5

Control characters wic.h 80-column 1rmware off 77
Control characters with BO-column firmware on
TexL format conlJ"o! values B

able 4-6 Partial li.sl of other Monitor firmware
VO routines 79

C pt r S Se rial-Port Firmware 81

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Figuoc S~S

Handshaking when DTR/DSR. option is turned on 84
I Iandsh:a.king when DTIVOSR option is lUmed off 85
Ha ndsha.king via XO /XOFP 85
Summary of extended rial-port
buffer commands 107
Summary of extended seriaJ· port
mode and hardware control commands 108

.Xiii

Table 5-1
Table S-2
Table 5-3
Table S-4
Table 5-5
'fable 5-6

Table 5-7

Baud· rdW .selections 88
Data-formal 5eleninns 88
?ari~y !;elections 89
Terminal-mode 1::ommand characters. 92
Service rnutinc dcscriplior.s and address offset.s 93
J/O rouLine offsets and registers
for Pascal 1.1 firmware protocol 9-'l
fnterrupl setting en.able bits 106

Chapter 6 Disk II SupPQ(t l 09

figure 6-1
Table 6-1

Order of disk dri\•cs on Apple JIGS cl.i.5k pon.s 110
Disk Il T/O port characteristics 111

Chapter 7 Smarf Port Firmware 113

xiv Figures and tables

Figure 7-1
figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7.6
Figure 7-7
Figure 7...S
Figure 7-9
Figure 7-10
figure 7-11
figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7· 17
Figure 7~18
table 7-1
Table 7-2

Table 7-3

Tabte 7·1
'fable 7-5
Tab~e 7.6
Table 7-7
Table 7·8
Table 7-9

Smart Port m type brte 11 5
Device mapping: configuralion 1, derivation 1 118

Device mapping: con.figuration 1, derivation 2 118
Device mapping: configuralion Z, derivation 1 119
Dt:vicc mapping~ configuration 2, dedvatccm 2 119

Device mapping: configuration 2, deriv:H.ian 3 1J9
Smart.Pon device subtype byte 121
Disk-sector format 140
U niDisk 3. S memory map I 50
The ROM disk 154
Block diagram of a l 28K ROM disk 155
SmartPon cone.ml flow 159
SmarlPort bus communkation.<>; read protocol 161
Smart.Port bus communicalions: wrtte protocol 162

Sma rc.P on bus packet for mat 163
S man.Port. bus packet con ten t.5 164
Bit layout of a 7-byte da1a packet 165
iransmining a l ·byte data packer 165
Regi1;1er s ta rus on return from Smart Port 12 l
Su rnmary of stand a rd com man tis
and parameter Hsi.s 1.~6
Summary of extended commands
and parameter lis l-S 13 7
Uni Disk 3. 5 ga ce array TIO I ocations 15 l
UniDisk 3.5 IWM locations 151
SmartPon error codes 156
Data byte cnco<li ng table 164
Slandard command packel content."> 166
Extended command p:ackct cot1tcn1.S 167

l'.

Figure 8-1
Table 8· 1
Table 8-2

Buill-in jnterrupl handler 172
Summary of system interrupts 175
l nterru pl vectors 177

Chapter 9 Apple DeskTcp Bus Mlcrocontrollet 185

figure 9·1
Table 9-1
Table 9-2
Table 9·.~

Apple DeskTop I3us components 186
Bit fonctions 189
Keyboard language codes 190
Status byte returned by microconlroller 1 %

Chapter lO Mouse Firmware 197

Pigure 10-1
Figure 10- 2.
Table 10-1
Table 10-2
Table 10~3
Table 10-4

Button [n~errupt status byte, S77C 205
Mode byte, $ 7FC 20 5
Apple JIGS mouse daL.l bits 199
Apple JIGS mouse register addresses 200
Po,<;ilion and status information 205
Mou.se firmware calls 209

Appendix A Roadmap to the Apple llGs Techn!cal Manua ls 215

Figure A- 1
Table A-1

Ro;idm.ip to the technical manual~ 217
Apple IJGS te<:hnical manuals 216

Appendix B Firmware ID :Bytes 222

Table B-1 ID informal.ion locations Z2.2
Table B·2 Register bic information 223

Appendix E Soft SwHcha$ 276

Table E-I
Table E-2

Symbol tab le sorted by symbol 291
Symbol lahle sorted by add ress 292

Appendix G The Control Panel 299

Table G-1 Language options 305

Appendix H Banks $EO and $:El 308

Figure H-1 Memory map cf banks SEO and $El 309

flgures and tab~e$ x \I

Pref

Tuts is the firmware reference manual for me Apple® IIGSTM compu1cr. It is for
hardware de5j gner5 and programme rs who wa nl to work wilh the 5}'"stem flrmw;ue i 11
lieu of using lhe Apple lIGS Toolbox rouLincs to accomplish similar goals.

Abou1 th is mcnuar
As part oft.he Apple ITGS tech11ical suite of marn..Jals, Lhe Apple l!GS Ftnnwaro
Reference covers the design. and function of t.hc firmware that drives the Ap[1le IIGS._ h
provid~s inform ;i. tio n ~ bou 1 lhe entry points for the (j rmware and descrLbcs the
firmware fu nctio n.s and li mi1a t.ctms .

.:. MXe: None of lhe manual::; in the techn[cal suite stands alone. Olher manuals in the
suite describe varLous tools to accompli.~h [asb; 1.fon die firmware can :ilso perform.
You should become familiar wiLh lhe contents of the other Apple IIGS manuals
because for most. appticattons, yuu may nOl need lO dtrectly use ~he firmware.

The audience for this manual includes programmers who 'W"::l.nl. to work wim the
firmware and application programmers who w~sh to convc::rr or upgrade:: existing
applications for the Apple II, 11 Plug, He, or lk lO take advantage of lhe new functions
available on lhe Apple IIGs_

? Note: AppHcations written explicit.!y for me Af1ple He can be boated on lhe
Appl~ JIGS, wilh 110 discernible difference in t.hcir operation.

This ma.nu a I <lac.-; no [i ncorpora le any desc rj pli ons of hardware; .sec the Apple Iles
!Iardwo.re Referenc(} for this informal io11 .

xv :i

Whet this manual contains
Chapter 1, ~overview.~ provides an overview of 1he Apple llGS. firmware.

Chapter 2, ~ Nnc~ for Programmers," provides information for those who are ;ilread;·
familiar with other A rrk~ I [compute rs .

Chapter 3, ~system MonilOr firmware," shows hnw 10 use the system MoniH)r to
examine and change rnemury or registers and la wriw :rnJ debug small machine
language programs_

Chapter 4, ~video Firmware,n desnihes the text input and Oulpllt facilities or !he
1\pplc JIGS.

Chapter s, use rial-Pon Firmware, rr cJe.~nibes the features and functjuns of the bULh-in
serial port.

Chap~er 6, "Llisk II Support," describes Lhe fim1warc support for tile Apple bisk H®
product.

Chapcer 7, "SmartPon Firmware," define~ and describes lhe SmarcPorc firmware as
implemented an the Apple JIGS,

Chapter 8 , • interrupt-Handler Firmware," describes in detail the method by whicl1
various lci nd5 of interrupts arc processed.

Chapter 9, a Apple DeskTop Bus Miuoc.:onlroller,'' describes Lhe flrrnware portion of
1he Apple DeskTop Bu.sTI\(. For a complete pit1ure of this subsystem, you need th.is
manual, the Apple JIG'S Hardu·are Ref!!rence, and the Apple I/GS Toolbox RejITT"r.mce.

Chap{cr 10, ·Mouse l"'irmware," describes the Apple IlGS mo~ise interface_

Appendix A contains a roadmap to lhe Aprle IIc.s technical ma.nual!>, Read th is
a ppc ndix lO de term.ine which hr.>nkl'i you need lo learn more a bout a programming
language, the Apple IIGS hardware, or snme olher aspect of the Apple l lc.s computer_

Appendix B contains a list of the firmware lD bytes . The inforrn.i.tion lets you
dc::ccrrnine which machine in 1.he Apple II family is running your program. By
examining me.se [D bytes, you can allow your program m take adv-.mtage of the fca1ures­
a\•:ai!able on a particular member of this family.

Appendix C descrires 1hc firmware entry poinL'l for [he Apple JIGS, as well as lhe side
effects of each mu tine .

Appendlx D describes lhe firmware vC(..10r!), By jumping lo vc<.:tor5 instead of directly
lO particular firmware roulines, you can maintain compatibility between your program
and future releases of the Apple HGS firmware_

Appendix E describes lhe soft swLtches th.al cont.ml various aspens of system
behavior. These switch loc.alion:;, :rnd contents arc provided for reference only. The
contents of the swi\ches should be modilied only by sy.'>tern \ools .

xviii Preface

Appendix r lists the disasscmblcr/mini-::issembler opcodes. These wLll tx.: useful lO 1he
m.a.c:hinc·language programmer who u.'ie~ the system Monitor to enter small program~
for qllic:k lCSL~.

J\ ppendix G describes l he Co ntrnl P J nel option:;. a rid defaults.

Appc:ndil\ fl describes I.he content" of memory banks $EO and SEl.

A glossary foflows the arp<md.ixe."S.

Whot thi~ manual contains xix

Chapter 1

Overview

This chapter gives a brief overview of the Apple JIGS firmwa~ and how it relates co the
rest of [he syMem software . The Af,ple IlG:S fl.J'mware is composed of various routines
th:H an: s tored in the system's read-only memory CROM). The Apple IIGS firmware
rornines pro\'ide the means to adapi and conlrol the Apple llGS system.

-
Bout.ines for the following Apple [!GS firmware arc covered in this manual:

$vMcm Mon.itor firmware

,. video [irmwarc a;o rouLincs)

scnal-port firmware (for charaner-at-a-cirne T/O)

DL.~k II SU pport Cs lol 6 .SU pport.)

; Sm~mPorl firmware (for block device 1/0)

C· inlcrrupt -handler firmware

L Apple De.skTop Bus (ADB) mkrocontroller

c mou s.e fmn ware

A word about other Apple UGS firmware
;-...·ot .all Apple l IC.S firmware is discussed in this manual. The Apple IIGS ROM con~ains
other firmware. tmportant enough to warram separate manua[s: the Apple UGS
Toolbox (descdbed in detan Jn the Apple lies Toolbox Reference), Applcsoft BASIC
(dcscriocd in t.hc Applesofl BASIC Reference) , and the AppleTalk~ Personal Network
(descrtbed in inside AppleTalfi).

Apple llGS Toolbox

Tilc Apple TI GS Toolbox provides a means of easily constructing a p plica tton programs
with out necessa rH y using lhe firmware rou lines des cdbed t n this ma nuaL Programs
th:u you conslIUC.l using lhe iooL~ wilt conform to lhc Apple Hu.man buerf ace
Guideline;s. By offering a common set of roulines that every application can call to
imrl~m~~ni the u~r interface , the iools not only ensure familiarity and consistency for
the user but a!so help to reduce the application's code size and development lime .

Applesoft BASIC

·nK~ Apple IIGS also has Applesoft BASIC in ROM so th al you can crea\e and run your
own programs in BASIC.

2 Chapter 1: Overvlaw

AppreTalk
AppfeTalk is a lnc:al-area network that allows communication and resource sharing by
up to 32 computers, dish, printers, modern$, and other peripheral devices.
AppleTalk cons~sl-S of comm unica \inn h ar dw arc and a set of commu n kati on
prolocols. nu.~ hoi. r<..lware/ software package , together with the computcrS, cables and
connectors, sharc<l resource rnanagcrt;. (servers). and specia l ired application
sofI\v~re, functions in rhree major confibl'llr;nions : as a srnal!-:uea fnlerconncc:ting
system, as a lributary to a larger network, and as a peripheral bus bcLween Apple
computers and their dedicatc:tl peripheral devices_

Diagnostic routines
The system diagnoslic routines art: manufacturing lest routines . :'\lo cxtemal e11try
point<> are deflned for system diagnostic mulines at this tim~- Thus, diagnostic
routines a.re not documenwtl in [his manual.

The role ·Of firmware in the Apple HGS system
The firmware is 1hal set of low-level routines thal provides programmers wtth an
in[erfacc to che system hardware. The firmware, in turn, control<; I.he display, the
mou5e, serLal infKH/outpu~ (I/O), ;md disk dr~vcs. Firmware programs, such as the
Monito r and the Control Panel , work directly with the sy.~ lem memory.

Traditionally, programmers have controlled han:Jwarc directly lhmugh their
application program.~, bypassing ;i.n y .~y~le rn flr m ware:. The d isa d vamag(;! of th is.
approach is that the programmer has. to do a lot more work. Mnrc important,
byrassing the firmware increases chc likeHhood thal the resulUng program win be
Incompatible either with Olhcr programs or with future vc.-sion~ of the comrn..: [er. Ry
using the firmware interface, a programmer can maintain compalibili\y with currcm
and fucure releases of lht:! sys.iem.

For most of lhe fi.:mcLions th~l the firmware en1.ry points perform, there arc equivalent
fum:tions provided in lhe toolbox. The toolbox routine:'), in addition lo performing
like functions, also save and restore systc:rn registers when I.hey are called_ Read
Chapter 2, ~~o[e~ for Progranuners," for more demits about sys[(!m register usage.

The role ot firmware in the Apple llGs system 3

Levels of program operation
You can think of the different levels of program operation on lhe Apple IJG5 as a
hierarchy. with a hardware layer a1 I.he bo~tom, firmware layers in ihe middJe, ;;ind c.he
application al the top_ Figure l-1 shows a hierarchy of command lc\·els; in general,
higher-le~·el component.s caH on lower-levei ones_ C"lne levels are separated by lines:
lhf' hardware rnmponents h;;ive heavy outHrie.s.)

CPU Momorv l(eyboard Display

Figure 1-1
Levers or program operahon

Apple I IGS firmware
The fonowing sections provide an overview of lhe Apple HG~ iirmwan:: described in
lhi~ manual.

System Monitor llrmware

The system il.·1onilor firrnw:i.rc is a ~ct of routines that yoL.1 can use u1 D~rac~ th~
compuH~r ;d lhe machine-langL.1agc kn~l. You c;:u1 examine and change mc:mory
locations, examine and change registers. call sysl<.:m ru1.nirics, and assemble and
disa:;scmble machi ne-]Jnguagc program~ using the s~·stern Monilm firmware. .

4 Chapter l: Overview

Slots

Video firmware
Video firmware allov..'S you to manipulate the screen in bw-resolution mode and texL
mode Lhmugh your application progrJ.ms :111d from !he keyboard Communic:a Lio11
betv..1een !he keyboard and lhe:: video screen. is controlled by ilrm•Nare ~ubroutincs,
escape codes, and cnmrol charaClcrs . The v~deo firmware pro\•ides on-M:reer:i
editing, keyboard input, ouLpul to the sact:n, and rursor-conLml farilities .

Seriol-port firmware
The Apple UGS serial-port firm~varc provfdes a mc:::ut~ [O Jllow serial communication
with e.xt!!mal devices. such as printers and mndems. Tbc serial -pon firmwart:
provides suppon for such option.~ as h:udwarc ;rnd soflware hand.~h<1kirig and
background pfinting. There :ife twn serial rorts, either uf which <"J.i'I oc conflg\ired as. a
prinle r port or a. modem pon_

Disk n support
n~c Apple llGS Disk ll firmware- 1S a disk-suppori ~ubsystem. It u.~l:S 3 bu ift-in lmcgraH~d
\\'oz -~fa chine (j\VM) chip af"Jd accornmo~L'ltes Disk 1I (DuoDisk~ m UniDisk 1'1) llri~·ps
Slot 6 i~ the standard Disk 11 support -~lo1 The fcm1w:ue !hat rnmmunicatcs with the
[\\'Mat bom time provides ~upport lor booc.ing Oisk [J-has.ed software. Ocher h;ind!ing
of Oisk H devices is a function uf w"hiche~·cr Jisi< n~r~ting sy~tem is booted.

SmartPort firmware
f)j5k II d~vice.s •re direnly mancpu[a1ed by slm 6 ~nntrnl harJwarc. lnlelligcnt dcdces.
by rnntrasL, are not dircnly rnanipub. ccd by hardwaw, bul rather aw cor:itrolled by
saf1ware -drivcn command ~Ln~ams . Suell dccvices arc labeled fnie.IUgem tiP!.:lces
bco.u.~e they haw~ l he 1 r own controllers, which ca fl i ntc q1 rec 1 hese cornm;i n d 't ream~_
1he Sm.1rtPon firmware is a set of a.:;scmbly-language routine,~ chat permit you Lo
aHach one or more imelligent devices co the cxtem.-1 disk port of Lhe Appfe IIGS
sy.~tern. Using Lh~~ Sman..Pon firmware, ynu (;art controt iht.~se devices t.bmugh
S.m.i.nPof1 calls, su<.:h as Open , Clme, 1.-ormat, Rc~dfllock, :inJ Write-Block .

Apple !!Gs firmware 5

rnterrupt-hondler firmware
S}'Stem inrern1prs hall the execution of a program or lhe performance of a function or
feature. The system contains built -in inrerrupt-h:rndJer firmware, a user's interrupt­
handJer entry point, :and a means to notify the user when ;in interrupt occur.;.

Apple Desktop Bus mlcrocontr·oller
The Arple DeskTop Bus CADB) microcomroller is used to receive jnforrnation from
peripheral uniL'> atta<.:he<l to the Apple DeskTop Bus. "Ine ADll microconcrollcr rmH~
I.he lnlemal keyboard, sensing key-up and key-down events as well as control keys, and
optionallr buffers keysuoke.s for later access by the 6SC816. In additit>n, the ADB
microcontroller acts as host for ADB periptierai devices, such as the detachahle
keyboard and mouse. The AD B microcon rroller ha~ t!.5 own buil l -i n wt of
instruct.ions, in.duding Talk, Lis1en. SendReset, and Flush_

Mouse firmware

TI1c Arplc IIGS mouse firmware supplies I.he communication protocol for sensing the
current status of the mouse. The mouse firmware track.:; mouse-device position data
~n<l button status and provides entry points for assembly.language conirol.

6 Chapter 1; OvervJew

Chapter 2

Notes for
Programmers

7

111.is chapter c:onlains information thal wm be useful to the experienced 6502
program mer as well as s omconc ju st beginning w use lhe Apple UG Si computer.

The Apple IJGS has many 11cw fcarurcs nol found in previoug Apple oompu[ers.
Program ... wriuen for the Apple Tic or the Apple Ile will run on the Apple IlGS, but do
not take advantage of these new fealures .

Among the new features of the Apple IT GS ~~ a new sel of registers, pseudoreglsters, and
tl.ags, collectively known as the environmenl. Before you change lhe environment
for tl1c Apple UGS ~y.stem, read the following sections, which outline these new
features.

Introduction to the Apple llGS
The Apple llGS personal computer is a new ,\pple It with many high.performance
f ea turc::s. H igb 1 igh c.s include

·:_i more powerful microprocessor with faster operation and larger memory

~ high· rcsolu1ion RGB video for Super HiTRes color graphics.

i:-1 multivoicc <ligilal sound synthesizer

o dclachcd keyboard w ith App!e DeskTop llus rnnnenor

o built-in 1/0: dnck, disk port, and scriaJ poru; with AppleTalk Interface

r1 compatible slms and game 1/0 connectors

This lisl includes only the main fea1ures of the Apple 1IGS_ For a comprehensive list of
features. refer w lhe '/"echntcal lntroducttan. to the Apple /ICS.

Microprocessor feotures
The microprocessor in the Apple JI GS is a 6 5C816, a 16·b it de5ign based on the 6502_
Among che features of lhe 65an 6 are

'..J abiHty to emulate a 6502 8· bit microprocessor

n 16-bi t accumulator and index registers

n 24-bit internal addrc15S bus for 16-mega.bytc memory space

8 Chapter 2: Notes for Progrornmers

Microproe ssor modes

Tue 65C8 l 6 microprocessor can operate in two different modes~ native mod·e, with
~n of its new features, and 6502 emulation mode, for running programs written ror 8-
bit Apple U computers.

If you are using emulation mode cxtensivdy. you will be using lhe flflTiware calls
described in this rn<lnual. If you are using native mode, you probably will v.iant to use
the equivalent too! box calls instead of directly ca II i ng the firmware. The toolbox calls
save and restore the environment for you.

Execution speeds

The microprnces.snr in the Appk IJCS can operate al either of two dock speeds: the
.su.ndard Apple II speed or 1 MHz and I.he faster speed of 2.8 MHz. When running
programs in RA.~M, the Apple lJGS uses a few clock cycles for re.fre.shing memoryj
making lhe effective pro-cessing speed about 2.5 MHz. Sy.stem Hrmwarc, running in
RO;\·i, ruru;. ~ l I he full 2.8 Ml-fa_

Expanded memory

Thanh lo the 24-bi~ addresses of the 65C8I6, lhe Apple lIGS has a memory space
totaling 16 megabytes. Of this tmal, up to 8 megabytes of memory are available fo.r
RAM expansion, and 1 mega byte is a va. ilable for ROM ex pan.sion_ For addi tiona I
informatian about memory, re:,id Lhe 1echnrcal lnJTOductwn lo the Apple llGS.

The mini mum memory in the Apple JJ GS is 256K. Programs wrtnen for the
Appl~ IIGS---lhat is, programs lhal run the 6SCS16 microprocessor in native mode,
tharaby 5e> tn; 'l5 tho ablli tr ~., ~..i~33 mutt: lho!i...11 126rt; tl'r mt:. mry-uu UM: Up ID l>OUl
176K of the 256K. The resl is rc.sc::.rved for displays and for use by the system firrnware.

The Apple IIGS also has a spcciaJ card slot dedicated to memory expansion_ AlJ of lhe
RAM on a me mory--cxpansio n card is available for Apple lIGS app ti cation program~
lha.t call the Memory Manager. Expansion mcrnnry i.5 contiguous: Its add.ress space
CXl~ili without a break through all of lhe RAM on the ca.rd Expa11Sion RAM on the
Appk rrc.s is not limited to use as data storage; program code can run in any part of
RAM.

Super HI-Res display
In addition lo a.11 the video dis pfa y modes of the Apple n c a 11d A ppie Ile, the
Apple JIGS has two new Super J Li-Res display modes that look much dearer than
£taodard Hi-Res and Double Hi-Res. Super Hi-Res is also easier to program because it
maps entire byies omo the screen, insr.ead of 7 bits, and its memory map is Hnear.

Introduction to the Apple JIGS 9

Used wi llt an analog RGB video monitor, lhc new display modes produce high­
qua]i [y, high-resolution co tor graphics. Table 2· t lists lhe -"pcciftcations of I.he two
new graphics display mode:).

Table 2~ 1
Sup ar Hi-Ras graphics modes

Resolution
Bits pe r C olou Col ors Ce lor5

Mode Horlz. Vert , pl x~I pef Uno on 5cnten pcs.slble

320 320 200 4 16 ::!56 4096
640 640 200 2 16• 256• 4096

• Difft..: n:: nt pixds in 640 mode u.~e different pans of lhe p atette.

+:+ Nole: Pixel LS short for pielr.tre ~lement. A pixel corre.~ponds Lo the .smalte.~t dm)'Ou

can draw on the screen_

Each urn on the Super Ht· Re.~ screen corresponds lO a pix.el. Each pi.xcl has either a
i-bi l (640 mode) or a 4-b il G 20 mo de) va I ue assod a led wi Lh it. "lhe pbi::el value:.'i se len
col ors f mm progr;i mm ab le c:ol or tables ca Hc<l palettf.!S. A palette con.~ isis of J 6
cmries, and each entry is a 12-bi[value specifying one of 40% possible colors .

! n 320 mod~, each pixel co nsisL~ of 1 bet:>, so it can sel eel any one of t.hc 16 colors in a
palette. ln 6·10 mode, each byt.e holds four l-bit pixels. The I6 colors in the paletle are
didd.cd imo four groups of 4 colors each, and succe.s.s~ve pixels selecl from successive
groups of 1 colors_ Thus. e vc n mnugh a given pixE~ 1 in 64 0 m ode can be one of only <\

cotors, dlfferent pixels in a line can take on any oft.he 16 colors in a paJen.c.

To f urt.hc: r inn.ease I.he number of culo~ available on !he d~splay, lhere C"Jn be as
m::inr as 16 different palettes jn use at the same lime, allowing as many a.s 256 different
color.~ on tb(~ .~en~ (~n -

Digitol sound synthesizer
In aJui[ion to Lhe single-bit :'ionunr.l oulpul foum.I in other computers in lhc Apple Il
family. the 1\pple JIGS has a new digital sampling sound system built around a spedal­
purpme synlhe.o;;izer IC callf::LI ilie Digital Oscillato r Chip, or DOC for .~hon_ Using
the DOC. the Apple l [GS can produce 15-voice music and other complex sounds
withoul tying up il') main proce~-;{~r . Refer w lhe Applt! i!GS Hardware Reference for
detai ls about the sound sys[cm ~nd me 1XX:.

Detached keyboard with Apple Desk Top Bus
The new detached keyboard indudes cursor keys and a numeric keypad . The Apple
De.~kTnp Bus, wh..ici1 0urport.~ the keyboard and the Apple mnuse, can alsn handle
other input de\•ice.s .such as ;oyslicks and graphics lablets_

l D Chapter 2: Notes for Programmers

BullMn rtO
Like the Appte He, !:he i\pple IIGS has two built-in disk port5 and two serial J/O pons.
Programs can use Lhe built-in pons and peripheral cards in slnL-; . lnc built-in
ApplcTalk interface uses one of !he serial ports.

The Apple lIGS also has a buill· in dock-calendar with a bauery for continuuus
npera tion.

Compatibre slots and game r10 connectors
In additjon to the memory-expansion slol, the Apple lIGS ha., seven !/O expansion
slot'> like those on the Apple Ile. Most peripheral cards designed for c..he Apple ti Plus
rnd the Apple IJc will work in t.hc Apple J?GS sloes_ The Apple !JGS also has game T/ O
LOMectors for existing game ha rdwarc.

Environment for the firmware routines
Many useful subroutines are listed in Appendix C, "Ftrmwarc Entry Potnts in Bank
$00. ~ All of these routines have one t:hi.n.g in common: To use them, lhe processor
must be set up to look and act exact.I}' like a 6502 in all respects. You mu.st therefore set
the C>perating environment to cause Lhis lransformation lo happen .

lmpor1Qlnt

This section contaJns the r.peclflc detolls about setting and restoring ttie
envjronment before calllng and otter returning' from colling tne flrmwa(e routi[)es .
You must roilow these requirements exactly. or your program wlll fall.

The specific operating environmcnc. requirements for all these routines are as follows:
1 d bit = O (decimal-mode bil)

o c bi~ = l (emulation-mode bit)

c D register "' $0000 (direct-page register)

::..; DBR register= $00 (data bank rcgis[er, called I3 en Chapter 3)

:::i PBn rcgistc.r = $00 (program bank register, called K in Chapc.cr 3)
o S register= $01 xx (stack pointer)

+ Note: If you make too).c; calls instead of using lhe firmware direcLly, you will nm have
lO worry about the operating environment. The c.ool caHs handfo lhe em.:[ronmenl
for you.

E nvlronme nt tor the fl rmware ro lJt1 nes l 1

Setting up the system
To correctly prepare ilie sy tern for ca11ing the firmware roul..incs, you musr Lake several
sleps:

:i Save your environment

:J Get I.mo bank $00: JSL (jump to subroutine long) to a routine in bank $00.

'.J Set the D register to 0000.

!:] Scl the DBR to soo.
::J Save the value of the native-mode stack pointer, and el the stad< pointer lo I.he

value of the emulation-mode Slacit pointer.

:J Select emuJation mode: set Lhe e bit to 1.

These steps make che 6SCS16 appc..->ar LO be a 6502 microprocessor operating in Us
normal environment. Now you can set up the machine registers with the parameters as
required by the pa.n.icular nrmware routine and execute a JSR (jump lO ubroutine).
These steps are explained in Lhe sections Lhal follow.

Save your environment

n1e. environment is lhe complete 5e[of machine registers and flags that your program
uses. Besides ma.chine registers, the environmem includes such things as processor
speed, read-only memory Q{0.!\>1) bank, language-card bank, and random-acccs
memory (llAM) shadowing,

When you run the various ftrmware routines, l:hc syst.cm will use the machine registers
for its own purposes. If you depend on a particular register having a pedfic value
when you rmally return to your own code, then save that register's contents on your
native-mode stack or wherever else you wi h so lhat you can restore lhc register's
contems before you rclurn Lo your olher program code. To determine which registers
each flrmvvare routine uses or aITeru, see Appendix C, "firmware Emry Points in Bank
soo .•

Gel· nfo ban'k $00

If you auempl to run the 65C816 in emulation mode bi any bank other than bank $00,.
no imerrupL processing can r.ake place. You enter program bank SOO by executing a. JSL
(jump to subroutine long) co someplace in bank $00 (if you are not already there),
where the next sreps are performed_ This JSL sets lhe program bank register (K) to $00,
fulfilling that pa.rt or me firmv.rare routine rcquiremenl. lf you did not save your
crwimnrnenL before entering bank $00, now would be an equally good ti.me to do so.

Set the D register to $0000

A 6502 expects its rem page (called I.he direct page for the 65C816 when operaling in
naLlve mode) co exist in Lhe microprocessor address range of $00 lo $PF. When the D
rcgisler i<> :seL lo 0, the zc.ro page gets postlioned correctly for a 6502.

12 Chapter 2: Notes for Programmers

The DBR is the upper 8 bits of the 24-bit data address. The DBR mus~ have a value of
$00 for lhe firmware rour.ines to function.

Save the value ,o·f the nat·ve-mode stack pointer

When you swiich lO emulation mode, the upper 8 birs of your stack poincer will be lost
Thw, this value must be saved somewhere so !:haL il can be restored to its original value
on exi from this routine. The most conunon technique is to save the value of the
entire native-mode scack poinier on lhe emulation-mode stack.

(lo t..'ole: The main and auxiliary stack-p11.ge switches e1nnot be used in native mode,
Thus, when switching to emulalion mode, you must use the main stack.

The mutine that follows saves the native-mode stack pointer and correctly sets the
values for the direcl-page register and the data bank register. If your program requires
otller values for the direct-page and dau bank re~ters, save Lhese environment
variables (as wen as other register values in your environment) so that you can restore
the vaJues after returning from lhe nrmwaxe routine mar you call. The EMULSTACK
routtne can be appended lo the begtnn.Ing of your own firmware calling sequence. A
corresponding routine co restore lhe native-mode [a.ck pointer is given in the section
'"Ueturning to N:nive Mode" later in thi chapter.

EHlJLSTACK

TOEHUL
EQU $0l0100
REP if$30
l'SC
Tl\X

SEP fS20
XB11
DEC A
BEQ
r..011
XBA

A!.READYPGl
1$01

:Before entry, save YO~R environ~ent!
; E.rro1.1lat::!.an stae'.< r c..inler ls saved hore
; 16-bit m and 11:

;l'emporary s~ve or native-modo stac~ painter

;8-bit m
;Ge s~ack polnLer paqe
;Is stack already in page ?

;If so, don' get emulation stack ?<linter
;Se stae page to $01

LOA ~MULSTACK ;Gel emulation ~tack po~nter
TCS ;Set emulation stack pointer

ALRE.1\DYPGl PHX ;Save nacive-mod~ st~ck painter
SEC ;Emul~tion mode
XCE ;S~~ cmu_atlon mode
PEA SDOOO
PLD ;Set direct-page register to SCOOO
LOA 0
PRA
PLB ;S~t oata ban~ regi~ter to SD~

;Herc continue wi~h YOUR processing

Environment for fhe firmware routines 13

Select emu1alion mode

Selling the c bil to 1 puts the 65C816 into ernuJaLion mode and automalically secs the m
and x processor 51.aLu btl.'> lO L The x bit forces l:he X and Y registers lO be ~reueu a'>
only 8 bits wide. Them biL forces the acoumula[Or lo be U'(.':lCed as only 8 bits wide
This step al.so aff ect.s U-.e . [,.._e of che stack and the co11ten1S of the slack regL5ler.
Specifica.lly, the value of lhc upper 8 bits of lhe stack pointer is forced to -a value of
hcxadecimaJ SOI (the same as the 650Z). While you are jn emulation mode, these
upper B bits never change. Thus, the sf.z of chc stack is re.5'tricted lo 2.56 byte!!.

Now you rnn set up the machine registers as required by the partirufar firmware rouline
and JSR

Returning to native mode
To return to native mode, you must perform a sec of Slefl.'i complementary Lo lhe
preceding steps that cau~d your program to enter emulal.ion mode In the firsL place:

o Rcswre the native-mode slack pointer.

n Restore your e.nvironmen1 (if you arc wilhin the bank $00 enlry rouline).

Then you can execute an RU (renirn from subroutine long) LO your poinl of origin
{assuming I.hat you performed a JSL lo enler th.i -· code in the fusl place). These lWO

rcrurn steps arc explained in detail in the next two sections.

ResfoTe the n attve-moc:le stack pointer

Re~um lo native mode. The following example is the complcrncnl to chc preceding
example that saved lhe native-mode stack pointer. Nocke I.hat Ibis routine a.l:so reu1rns
I.he processor Lo native mode (il sel.'i I.he e bit lO O :and lhcn sets them and x bits to 0).

E'HP
CLC
XCE

PLP
REP i$30
PLX
':'XS

Restore vour envrronment

;Preserve t!rrnware ' s c [car~y] ~tacus

;Sei: native mode
;It'~ stlli ln 8-b!t
;Restore the carry f ag

,; Set 16-bit
;Get nat!v~ stac:!o:: poitlte.r fro Gmulation si:;ack
tSet the ~~tiva-modo stack pcinter
;Now re~tore the re~t of your environEent~

Restore all of your regtsters and nag lO the values chat your pmgrnm expects to find on
return.

Assuming I.hat you used a JSL in I.he c.ode that S1lvcd your environment and your native­
modc stack pointer, you can now perform an RTL and resume ex:eculion nf your
program.

14 Chapter 2: Notes fo:r P(ogrammars

Other requirements for emulation-mode code
The preceding example showed how lO cill f.umwarc rouLines antl specifi .d that we
proressor must be in emulalion mode, running in bank $00, to call the nrmware
routines. There may be ol.hcr times when you want Lo use emulation mode from banks
other Lhan bank SOO, bul you musl observe other pcdfic requirements.

When you run emulation-mode code in a batik other than bank $00, interrupt! must be
disabled.

+ Note· Par AppleTalk ~pplrcations, you must be sure that interrupts a.re e.n.abled far
al lea.st 20 milliseconds oul or every 1.1 second:;. For applicatiom using lhe Lick
counter, fmerrupt.s must not be disabled for longer lhan 16.67 miJlis.econds or ticks
will be lo.<>L

When you a.re in a bank other I.furn bank $00 with [nterrupts di.sabled, if you mix 6502
and. 6SC816 instructions, lhe 65CB16 ins1:.ructlons ·will still function as documented. But
not:e that all 6502-equivalc.m insuuctions behave the same as a 6502 regarding dirccE­
page and stack-page wrapping. The new 65CB16 instructions manipulale the stack and
direct page, bU[do not wrap on a page boundary. Thus, you mu.st exercise care when
using these new stack- or direct-page instructions.

CcuHons about changing the environment
rfyou wrilc your own subroutines (or programs) lh.al change .'iome pan of the operating
environment, be sure lhat your code, :u exil, pt.H5 [hings back lhe way it found them :a.l

entry, This js especially uue of 5lack- and zero-page changes, data-hank-register
dtangcs, m, e, and x changes, speed-register changes, ROM-bank changes, and
language-a.rd changes.

Stack and direct page

f'o.r Apple TI programs, lhe slack and the dirccc page (called lhe zero page for a 6502)
must be ln their proper 6502 localions and lhc slack musl ~ 256 bytes long, For
Apple JIGS programs, slack ize and stack- and direct-page locations ar~ at Lhe
discretion of lhe application. (Call I.he M~mory M:-.nager lO obtain a new zero-page
area).

When you are in native mode, you can locate the stack anyvvhcrc within bank $00. If lhc
rack is located· in memory at ol.her lh.an page 1 and the processor is switched to

emulation mode, the upper haJJ of the slack pointer wi.U be lost (scL co $01). When the
processor is switched back to native mode, lhe upper haJf of the slack pointer will
remain set to page $01. To avoid losinE the nalive-mode slack poinLer when swhching
to emulation mode, you must temporarily save the slack pointer so 11 can be restored..
Sample code for saving and reslorlnJ!l lhe native-mode stack value is shown in the
exam ple.s.

Environment tor 1tia firmware rou inas. \5

Dalo bank registers and e, m, and x Rags

1.f your subroutine changes the contenlS of the data bank regisLcr or lhe e, m, and x
{fags, you hould :testore them to their original values. These registers affecl not only
Lhe locations to which lhe index regislers X and Y point and che length of the A, X, and
Y registers; the contents of these registers also affect how the procc sor imerprcts its
instructions. One can easUy jmagine an incorrccc flag or regi lCr value causing a
perfectly good program to ran.

Speed· and Shad'ow-regl,sfer changes

Changing any of I.he bits in the peed or Shadow register (see Chapter 3, "System
Monitor Firmware") also alJccts how the system run') , (111e hadow-register bilS of
interest and the speed-change bit are all accessible Lhrough lhc pscudorcgi:•tcr callc<l
Quagmire. For assembly-language programming, you access these registers directly.
See the Apple llGS Hardware Reference for more in.formaLion.)

Language~corcl chonges

1f you change rhe active b;;ink of ~e language card without restoring it on exil from your
code, you ag:ain risk ruining another programmer's code. For example, Lhe olher
prog![anuncr m.igh. h.ave e ecuted a J R or JSL out of some code in ROM bank or a
particular bank of lhc fanguage caret The return address of that com.inc i5 on the stack
and points lO the return :address within lhat sarn • bank or ROM or the language ca.rel. lf
your routine changes banks without restoring them to Lhc original v lues upon exit, the
syS'Lem will fail.

General information
lhis section contains other general information usefuJ in creating 6SC816 programs
for the Apple IIGS.

Apple llGS Interrupts
The Apple IlGS firmware provides improved interrupt support, very much Hke the
enhanced Apple Ile interrupt suppon. Neil.her machine disables i.n1errupts for
extended periods.

1be main purpose of the interrupt handler is lo Sllpport interrupts in any memory
configuration. This is done by saving the machine's ' tare ac c.hc lime uf the tnterrupt,
placing the Apple IlGS in a standard memory configuration before calling your
program's interrupt handler, and then re ·toring the original slate when our
program's interrupl handler is finished. (Sec Chapter 8, qlmcrrupt-Han<ller
firmware," for more information.)

16 Chapter 2: Notes for Programmers

Boot/scan s·equ -nee
The bootlscan sequence is initiated by selecting Startup; Scan from the Conrrol Panel
Slots menu. When lhe selection is made, lhe Apple JIGS starts at slot 7 and t:es!S eri.ch
slot for a boot device; Lhe first device found is booted. The Apple ilGS starts itco scan at
me slot selected, ignoring aU s?ms with g_ higher number, and works down lo slol l . If
no bom devices are in lhe slots, the screen displays Lhe message hown in figure 2-1
(the apple move back and forth across the screen).

Flgur - 2-1
Boot-1a11ure screen

C ack startup Device

•

If slot 7 is enabled for an external devjcc, lhe scan wiU proa ed as just describ d .
However, if slot 7 is sel to AppleTalk and if th Startup slo t is set ro slot 7, the fun:i:wam
will 1.ry ro boot AppleT Jk. ff RAM Disk o r ROM Disk is selected, lhe Sma.rtPort
finnware wiU be activated and lhe system will anempt lo boot from Lhe RAM disk or
ROM disk (see Chapter 7, " ma.rtPorc Firmware").

Program bank register
The 65816 program bank register wraps within a 64K bank boundary. Dala retrieval and
storage, however, do not wrap within a 64K b:mk. Titls means I.hat a program Lh.al
executes al the top of a bank continues 10 execute at the bottom of rh.e :;,ame bank, even
between ope.ode and operand within a single jnsLruclion. Furr.her, data retrieval and
storage at lhe lop of a bank simply roll over into the bouom of i:he next bank and
conlinuc as if no bank had been crossed This same operalion also oe<:ur with
indexed instructions.

lmp ortanr

You must exercise core when writing code hat deals dlrectiy with state­
dependsn hardware. The cycle-by-cycle operations of the 65C8 l 6 emulat on
modEi and the 65C8 l 6 native mode differ. lhls behavior hos to do with Indexed
Instructions. l.n one mode. a, false read occurs at o given cycle. and In the other
mooe. a false write occurs. This dltterElr\Ce can cause problems If soft switches ond
hardware expect one operot1on and ge another.

General Information 17

Exchanging the B and A registers, XBA
The A register (called the C register in native mode) is a 16-bit register u cd in bor.h
native <l nd emulation modes. tn native mode, all 16 bits arc used; in emulation mode,
8 bits are used for lhe A regist.cr and 8 bits are used ror the B register (see Figure 2-2).

C CA) Native mode

I l I I I I
A

Emulation mode

Flgme2~2

AccumuJotor tor emu!atton and native modes

Some programmers with 6502 experience might sec the XBA instruction as a qu iCk way
Lo save the current contenl.'! of the A register while running in emulation mode. Then
they mighr a · ume that tt ls appropriate to jump lo system routine (that have lO be
exeruced from emulalion mode an}rway) and rcrurn, restoring tlle A register from B by
another XBA. However, Lhe comcncs of the B register (the old 8-bit accumulator
vaJuc) will not be valid on return from any firmware routine. Thus, do not transfer
comrol to any system code prior to restoring rhe A register with i:he following XBA. If
you do, it is at. your own risk. Although current documentation for I.he firmware enl:r}'
poinL'l occasionally may show I.hat the con1ents of then register are preserved, this will
nm necessarily hold uue for later releases of the firmware.

Par example, Lhe following code works in 8-bit mode;

XBA
J.JJA. ~LAG

LSR
XEll\

; Pr e .serve 1\

; De s ome hing wi t h A
:Move LSB to car ry
; Rest ore A

TI1e following code does not work:

XBA
LOA i! A

JSR COUT
XBA.

; Pr P. scrve A

; Cgntrol i s transferred
; Ros t cre A

The A In che first line is no1 the same as lhe A in the fourth line.

18 Chapter 2: Notes for Programmers

Sys,fem Monitor
Firmware

19

This chapcer describes the Apple !TGS system Monito:r firmware, a low-level,
command-driven program lhat Jets you examine the machine state as well as create
and test sma11 machine-language programs. A professfonaJ developer wiJl UkeJy use a
sophisticated assembler and debugger in addition to the system Monico r fi rmrware.

Note mat when you use the Monitor to wrile machine-language progr:uns, you can use
~he Monitor entry points listed in Appendix C, "Firmware Entry Points in Bank $00,~
to make }>Cur job easier. Also, if you use the disassembler, you wiU be i.nceresred in lhe
table of disassembJer opcodes in Appendix F, ~Di.saissembler/M.i.nf-As5'embler
Opcodes.~

The syStem Monit.cr firmware fs a program that you can use lo create and lest your own
machine-language programs for the Apple IlGS. From the Monitor, you can creale
programs that uli.Hze various systeni.residenl subroutines (a summary of which is
contained in Appendix C, •firmware Emry Points in Bank $00"), Wben you create
your own progntm.s or u5e lhe Moniwr to examine programs l:hat others ha\•e created,
various features of r:he Monitor firmware assist you in your task.

Tue Appie IIGS Monitor provides commands lhat

c manipulate memory by examining ic; by entering chaQges in either ASCII or
hexadecimal form1 by moving, comparing, or lilling blocks of memory; and by
searchrng for specified patterns

:::1 view and change the execution environment (microprocessor registers and llags)

Cl execute p mgrams from the Monilor

Cl lep through and ll'ace program execution {hooks only~ no code in current ROM)

o perform miscellaneous tasks such :as sening che display lo inverse or normal video,
dlspla ying or sch.Ing the lime and date, redirecting input and outpul, perforrni.ng
hcx:adccirnal ariOtmetic, returning to BASIC via cold or warm stan

o invoke the mini-assembler

D invoke the disassembler

Invoking the Monitor
The sys[em Monitor res.Ide in read-only memory (ROM) beginning aE loc.a.r.ion
$FF69, or - 151. To invoke the Monjwr, you issue a Call statement to lhis location from
the keyboard or from a BASIC program" \\:'hen the Monitor is running, its prompt
characrer (*) ·appears on the left 5fde of the display sc:rccn, followed by a cursor. To
use Lhc Monitor, type

caL -:~1 Return

The prompt characlei- and the rursor (a flashing blank space) appear:

20 Chapter 3: System MonJtor Firmware

Monitor command syntax
You enter all Monitor instructions in the same format: Type a line on che keyboard
and press Return. The Monilor accepts the line using the VO subroutine GETI.N. A
Monitor instruction can be up to 255 characters, followed by a carriage return.
(GETI.N is described in Chapler 4, "Video Firmware.")

A Monitor command can include four kinds of information: memory-bank number,
addresse , data vaJues, and command characters. You type addresses, memory-bank
numbers, and data values in hexadecimal notation.

The microprocessor in Apple II computers prior to the Apple HGS could ad~
memory only in an address range from 0 lo 65,535, The Apple IIGS, on lhe other
hand, can address up to 256 banks of 65,536 memory loc:alions each, Thus, there is a
need for a memory-bank address qualifier for- lhe Monitor commands. You will see
the complcce address represented as I bank/ address), whe.rc bank is lo be specified
as rwo hexadecimal digifS and addross as rour hexadecimal digits.

When the command you type calls for an address, the Monitor accepts any group of
hex.a decimal digits, a utomatlcally providing lc,a. ding zeroo lo fill ut lhe width of the
field of digits.

Monitor command types
There are two distinct types of 1'onilor commands: commands that perform an
operation (such as examining or fa.Hing memol)') and commands that change a
register value.

For commands lhal perform an operal.ion, ea('.h command you type consiscs of one
command character, usually Lhc first letter of the command name. When the
c:ommand is a leuer, it can be ejtbcr uppercase or lowercase. The Monitor recognizes
46 difTerent commands. Some of lhem are punctuation marks, some arc tellers, and
some are control characters.

~ Nole. Although the Monitor rccogni7.es and interprets control characters wped on
an input line, control characters do not appear on lhe screen.

for commands th.al affect the coolents of a register, each command you type consislS
of a value and a regisler name. For register names, lhe Apple IJGS Monitor docs
require that the register name be entered using the proper case (uppercase or
lowercase). The syntax of a .register·modifying command is

I va/UQ} = ! reg:ls:en

Monitor command types 21

When you use a register-display command, the appropriate case for you to use Lo

modify the register contents is shown in lhc display for each register. Be certain to
note whel.heI the regisrer name is uppercase or JowerCL'SC and to use the correct case

when selling a register value.

TabJe 3~1 lists the Mani.tor commands and lhdr syntax grouped by rype. In Tab1e 3~1

and in chc rest of this chapter, the command formats often specify addresses from

which daia is obtained or 10 which data is senL The source and target addresses cake

lhe form

bank! addresJ

where bank is an optional bank nu.cnhe.r (one or two hexadecimal digits) and addr;es.s
is the address (one to four hexadecimal digits). The bank number, if present, is
separated from I.he address by a forward slash (/) character. To make the conunand

formars more understandable, several terms arc introduced here, each of whlch may

be used in Heu of bank/ address. Nole that each of Lhese tcnru uses exaclly the same

formar: an optional bank number and the address. The purpose of lhese substitute

forms is to make the command form.a.ts (especially within tables) easier co understand
al a quick glance.

The following te:rrlli may be used;

flt.JHnaflBn
from_ address
ta address

start address

val
val16
va/64
val JO
mm/dd/_w
hh: mm:.£5

Nl ~E!9r~§§ twH:b ggt!er~ !3an!H 1:!1:H ~en·9 ~s ~ ~:H~ !:!!:'.~~~~9n
An address (with optional bank) at one end of a range of addresses
An address (with oplionaJ bank) at the other end of a range of
addresses
An add.re$ (with opl.ional bank) aL which Lhc Monitor will start an

operation
An 8-bit (1 -uytc) value specified as two heltadecimal digits
A 16-bit (2-byte) value specified as four hexadecimal mgilS

A value expressed as up to eight hexadecimal dLgiis
A value expressed as decimal digits
Three 8-bil values separated by forward slashes
Three 8-bJt values separated by colons

22 Chapter 3: System Monitor Firmware

Table J . 1
Monl or commands grouped by type

Command type

Viewing and modltylng memory
Display sin le memory location
Display multiple memory locations
TerminaLe memory·ntnge di play
Modify consecutive memory

Move data in memory
Verify memory conlents
Pill memory (zap)
Pattern sea.rch (specified in four
ways; any or aU forms may
combined in a single search
request)

Viewing and modifying registers
Examine registers
Modify accumulator
Modify X register
Modify Y register
Modify D reg]ster
Modify DBR re istcr (bank)
Modify program bank regisLer
Modify Mack poimer
Modify processor sUlLW
Modify machine-state rcgisler
Modify Quagmfre register
Modify 16/ 8-bjt accumulator mode
Modify 16/ 8-bi t index: mode

Modify native/ emuJalion mode
Modify language-card bank
Modify ASCII' filter mask

Command rormal

{from_ address}
lfrom_addressJ • [to_address)
Conlml-X
{ desttnatton I : (ual } (ual) ("lfJeral ASCll" I
('flip ASCJJT I {val}
[destinatton} <{/mm address} . {lo address JM - -{ desttnati.on l < {from _address} . ! lo _addres } V
{ vall < lfrom_address}. { to_cuidrt:ss}Z
\!val}\< {from_addre.ssJ . I to_addre.ssl?
\{ '123l' l\<(jrom_address). fto_aadress)P
\ { "ll'teraf ASC!r' f \< {jrom_addres } . (to_address}P
\ { val16} \< {jrom_addressi . { to_address}P

Conlrol-E
[val16J=A
{ r1a.t16} ""x
fval16J=-Y
t va/161 =D
(val) =B
fvalJ=K
1vall6J =S
(val} =P
[val) • M
{val! =Q
f va/J=m
! val} • x

I vall • e
I ua/}=L
{ va/l-=F

(contln·ued)

Monrtor command type.s 23

Ta'bl• 3 -~ (continued)
Monitor commands grouped by type

command type

Ml5cellaneous
Begin inverse videa
Begin normal video
Change time and date
Display Lime and da~e
Redirect input Links
Redl~ect output links
Change creen display lO text
Change cursor
Convert dec.imal to hexadecimat
Convert hexadecimal to decima]
Perform hexadecimai malh

Add
Subtract
Multiply
Divide

Jump lo cold-start BASIC
Jump to warm-start BASfC
Jump to user vector
Qu1L Monitor

Program e11ecution and debugging
Go (begin) program in bank $00
Execur.e from any memory bank
Restore registers and flags
Resume execution
Perform a program stc p
Perform a program trace
Disas ·emble (list)
Enter mini-a~mblcr

Command rormat

N
=T=mm/ dd/ Y.Y hh: mm; ss
• T
I slot} ControJ-K
{slot} Con~rol ·P

Control-T
ComroJ-/\ [new_cursor_character)
• { val!OJ
I ua/64}.,.

I va/64 I + { vai64}
l val61 l - { r;a164 ~

t ual64 ~ * { uaJG4}
{vaf64}_ { vaJ64J
Conlrol -B
Contro]-C
Control-Y
Q

[st art_address}G
fstart_addresslX
Contml-R
{start addresslR
{start_address}S
(start_address}T
{start_address}L

24 Chapter 3: System Monitor Firmware

Monitor memory commands
The Monitor rnmman~ d1al directly affect memory arc di.scus..-.ed in this sec.lion.
These include commands lo examine and change memory location!, search for
specific combinations of memory contents, change memory contents individually or
in blocks, and compare memory blocks. The Monitor presents memory dumps in
both ASCH and hex::idecimaJ formats. You can ur.e e1lher nm.a.Lion lo enter your
requc.~ls for change. lo memory.

When y(}u use lhe Monitor to examine and change the coments of memory, lhe
Monitor keeps track of the address of the la.'>l location whose value you inquired abouc
(called lhe last-opened location) anti lhe a:ddrc. s of the location lhal is to have its
value changed next (called the next-<:hangeable location) In addition, once you
have :specified a bank number in one of your instructions, the Monitor continues Lo use
lhat bank number wich all other 1nstruct10ns until you explicitly chang it.

In Lhe paragraphs that follow, tile memory-contents displays are based on what you
would see if you were using the display in 80-column mode. When in 40-column
mode, the Apple rIGS Mnnitor dumps memory 8 bytes per Hne. \Vhen in 80-column
mode, the Apple TIGS Monitor <lumps memory 16 bytes per line.

Table 3-2 lists the Monilor memory commands.

Tabla 3-2
Commands for v1awlr;g and modlfylng memory

Command type

Display single memory hx:alion
Displa)' muh.iple memory location.
Terminate memory-range display
Modify consecutive memory

Move data in memory
Verify memory contents
Fill memory (zap)
Pauem search (specified in four
ways; any or all forms may be
combined in a single search
requcsr)

Command format

{jmm_address}
{from_ ad(Jress} . I to_ address I
Control-X
(destination): (ual) Iva/} I "l1terat ASCII'' I
I 'flip ASC!f~ l (val)
t destinattonl < l/rom_ addressJ . Uo_add~ssJ ,M
! destination} < {from address I . I to address IV - -
[val\ < {from_ address I . I .to_ address I Z
\ (val) \ < !from_ address l . I to_ address} P
\ { • 123l' t \< lfrom_ addressJ. { to_ addressJP
\ { "U/erat ASCII"' J \< lfrom address) . t lo address}P - ,_
\ f vall 6 ! \ < !from_ address l . t to_ address} P

Monitor memory commands 25

Examining memory
The S}'Otax required to display a single memory location is

~ ba'11k/addres5 } Return

II che Monitor i.s already examining I.he bank de.sired, you don't have to include lhe

bank number In the instruction. Simply cypc the address and press Return. However, if

you're not sure which bank the Monitor is in, include I.he bank number as shown £n the

example. The Monitor res ponds with the bank and address you typed

(banluaddress), a coJon, and !:he hexadecimal contenlS of che location. For

example, to examine memory location hexadecimal 51000, next w the MonilOr

prompt(""') type

"'00 / lCOO Return

The bank and address are displayed as weU a.s the contents of address SI ooo~

00/1000;20-

+ Nole; Dolla.r signs ($) preceiling addresses th:al appear in running text signify I.hat
Lhe addresses are in hexadecimal nocacion; however, dollar signs are Ignored by

I.he Monitor and must be omiued when typing instruc:.tioru. If location $1000 had

contained ASCU code, the ASCll equivaleni would be displayed on I.he far right of

the sc.rccn, as the following example shows:

"*: ooo Return

(Notlc:e that the bank address was not entered because you know chat you are in bank

$00.) The result is

00/1000:~1-A

-.~ NDle.- ASCII codes are decoded in Lhe rightmost 8 spaces of your display_ Printable

ASCII characters are displayed as normal characters; nonprinlable characlers ar

di played as periods (.). If you are using lhc Monitor in 80-column mode, the

ASCII characters wHI 1.ake up lhe rightmost 16 spares instead of 8, and 16 sets of

hexadecimal digit pairs corresponding to the byte value· SLOrcd in the displayed

memory range,

W11en you change lhe contents of memory, the Monitor saves the address of the lasl

location in which you changed lhe conten!S and lhe address of I.he next local.ion to be

changed-in or.her words, the last-opened location and the ne:>U-changeable
location.

26 Chapter 3: System Monltor Firmware

Examining consecutive memo·ry focotions
You may want to examine a block of memory Joca.lions, such ai; from $1000 lo $1007.
Simply type the starting address, a. period. and the, nd.ing address and chen press
Rewrn:

T!v80, l007 Return

The contents of me memory locations are di!iplayed as follows:

~J/:ooo:~l 42 43 ~4 45 55 00 00 -ABCDEU ..

If you type a period (.) foUowed by an address and then press Relum, the Monitor
di~plays a memory dump~ t:he data values stored at all Lhe memory locations from the
one following che last-opened location to the location whose address you typed
foHowing I.he period_ The Monitor saves t:he last location displ:ayed as both the last­
opened location and chc nex£-chang1!able location. In lhese examples, die amount of
dar.a ~ti.splayed by lhe Monitor depends on the difference between the address of the
last-opened location and t:hc address after the period.

8·J/ ~000: H-A
• . l G .J::~ Return
CC/1081:41 ~2 43 4~ 45 55 00 00 -BCDEO ..
00/1808:51 52 53 SC - PORS

When the Monitor perform a memory dump, It Star\5 at th location imme:dlately
following the last-opened location and displays I.hat addre and lh d::Ha va1ue smred
th.er~. lt r.hen displays the values of successive locations up to and including the
location whose addr1 you typed, but shows only up to 8 (or 16) values on a line.
'X"hen it reaches a location whose address is a multiple of 8 (or 16), I.hat is, one whose
address end-; with an 8 (or ff 16, an address that ends with a 0), it display that address
as the begionin of a new line and then conlil'lues displaying more values_
If ynu have selected ai large memory range to display and you wish to halt the display
and resume entering olher Monitor commands, pres~ Conlrol-X_ Th.is rerminate the
memory-range dispfay.

After the Monitor has displayed the value at the location whose addr ·you specified
ln the command, Ic stops the memory dump and sel.'i that location as both the last­
opened local.ion and the next-changeable location. lf me address pecified in the
inpu1 lcne is less than the address of lhe lasl-opened location, the Monitor displays
on[y the address and the value of the location foUowing ihe fas t-opened location_

Monitor memory commands 27

Changing memory contents
The p revious seclion shol;l!ed you how to display the values stored ill. the Apple llGS
memory system; this .section ahoVV5 you hew [0 chang those values. You can change
any location in RAM and you can also change the soft swirche.s 'l!ld output devices by
changing lhe contents of lhe memory location assigned lo them.

W rn ng

Use hesa commands carefully. If you change the contents of memory in ony
o rea used by the App le lkis flnnwa re or Applesoft. you moy lose prograrm o dato
stored In memory . You cc n find a mop stiowlng the, memory use by various parts
of the system software In the Apple llGS Hardware Refersnce.

Changing one byte

Previom commands kepi 1.rack or I.he next-changeable memory location; other
memory commands make use of Lhat location . In the next example, you open local.ion
$1000 and type a colon (:) followed by a value:

• 1000 Return
00/1000 : 50 - P
• : 5 ~ Return

This eat:ry changes lhe conlcnL'i of the opened location m lhe value you requesced. To
verify the changes, again ly_pe

•·· coo Return

The Monjtor now displa15

C~/ ' C-00 : 5<1 -T

You can combine opening a location and changing Its contcnt.s into a single operal.ion
by specifying lhe addres.s, a colon, and lhe contents on ::i .s[ngte command Hne:

r : DD 0 : 4 I Return

AJ; before , you can verify t.hat I.he ystem obeyed your command by typing

r: ooo Ren.im

·111e Mo n.ltor now displays

00 / l~OO : 4 1 - A

28 Chapter J : System Mon~tor Firmware

You can mange a byte to an ASCD code using lhe character instead of lhe numeric
•'ilue. Use the same syntax as before, but enclose the ASCll characters in double
quocalion marks, as follows:

To verify lhaL I.he location h:as been changed, cyp

1000 Re:tum

Aglin, the bank/ address and location contenlS are displayed.

00/1000 : El-a.

Note that when you change the contents of a programmable memory location, lhe new
value lhat you provide entirely replaces the value mac was in th t location lo begin
with. This new value will remain t.Jiere until you replace it with anoth r value or until
you rum off the computer. Pwth~r information about this opera.Lion is pro ided in the
section •AScn Filt.ers for tored Data" later in lhi.s chapter. (lf you are using I.he ASCH
lnpuc mod , the filter will affecl the dara that you have entered.)

Changing consecutive memory locations

You don't have lO type a separate command with an address, a colon, a val.ue:, nd a
l!etwn for each location you want to Change, You can change the vaJucs of man)r
memory lrx::alions at the same time by typing onJy the initial address and a colon,
then all lhe values separated by spaces, and lhcn Return . The onlo/ limitation is th l the
total length of the string, including the address, colon, all of che values and spaces,
and the RcUJm, must note ceed 255 characters- U ing this method, you could change
100 or more location in a Ingle ni.ry line_ Nme that you don't need to cypc leading
~ros, a feature chat provides even more po~Ible data C!ntry locations in a single
command 1.inc_

The Monitor stores the consecutive values in consecutive locations, starting al the
location whose address you cyped. After it has processed the string of values, it cake:
I.he location following the l t· c.hanged Jocatlon as Lhe nexl· changcablc location.
Thus., you cm continue changing consecul~ve toc:iitions without Lypillg an addres- on
lhe next Input Hne by simply typing another c:oJon, a space, and more va1ue . In I.he
following examples, you first change some locations and 1.hen examine chc..:m to verify
lhe changes,

1000 : 56 57 58 5 9 ~o Gl 6.2 153 e;~ 155 Return

The contents of local.ions 51000 through $1009 have been changed, as you can see by
examining Lho e locatioru:

100 0 . 100 9 Return

Mor\ltor memory commands 29

A:; before, the memory-bank number and Lhe starting memory address precede the
values you typed, and the ASCrI values are di played al the righL

00/1000: 56 51 :ie 5:1 60 61 6i' GJ 64 65-vr..ixv' abcoe

ln Lhe next xampk:, you use th· colon to continue a daia entry, as noted in l:he
preceding descrLplion:

~1000:41 ~2 ~3 Return
*: J DO 32 JJ Return
*1000 .100 6 Return
00/1000:~1 ~/ 13 30 Jl J2 33-ABC0123

Nmc that you can ncer data in either single-byte (one or two hex digits) or doublc­
byre (three or four hex digits) or triplc-hyte (five or six hex digits) or quadruple-byte
(seven or eighL hex digits) uriits. When a double-byte quantity is entered, the Monitor
stores the bytes in low-byte, high-byte sequence (the reverse of lhe way you enlercd
them), as demonstrated in the example (3130 entry) above. Th.is is useful when you are
specifying address entries for the mini-a..'\Sembler. You will Find more of !his kind of
cnu-y demon lraled in lhe section "'fhe Mini-Assembler" later in rhi chapLer.

ASCII input mode

You can enter ASCII data in two different way-. One way is called literal SCH; lhe
other way is calledflipASCll.

•:; 'ote: The ASCU Hiter will affect the final form of your data when ASCU input mode
is used. See lhe section "ASCil filters for Scored Da.1.a~ later in this chapter for more
information.

To enrer at.a in literal ASCII format, rype I.he character stdng you wish to enter
between a pair of double quol3l.ion marks. The characlCIS you enter are stored in
a. cending order in lhe same sequence In which you ryped them. lo sorne cases, you
might wam lo store the characters in r \•er: ·e order, with I.he fast character tored •U lhe
lowest memory address. You use fiip ASCII for Lhis cnt.ry mode. Flip ASCH is entered
by using single qumalion marks in place of double quotation marks. No1e, however,
thac llip ASCH is limited to four character maximum. The following example
demonstrates literal ASCII data ent.ry:

1 :::oo: ''l'..Cl:!O" Return
1000 .1003 Hetum
0011000: C5 CJ CB CF - ECHO

The next example demorutratcs ilip ASClI data entry:

1000: '~(;HO' Rtlum
1000 .1003 Return
00/1000: er CB CJ cs - OHCF.

30 Chapter 3: System Monitor Firmware

ASC 11 fiHers for stored data

When you perform any manipulation of ASCH code, you mu.st con.sider the Htcra.1
ASGl format or lhe stored dai:a. For example. do you want l:he data to be stored in
ASCII format wilh the mo:sl significant bLt set (to be compatible wil:h the 1/0 firmw:ue
for display purposes) or direcLly in true ASCil fonnat, where what you type exactly
follows the A.SOI standard? The formal can be changed using 'il.ny filters provided by
lhe Monitor. Thf: filler can be any hex value from $00 (maximum filtering) co $FF (no
fillering, that is, all source bi!.5 pass lhrough che filter unmodiflcd).

The niter formats are <'!.S foUow.!t:

El'ltry Fiiter

~~bc:defghijld" PP (defau!c filcer)
7F
3F

The syntax for changing filteJS fs

l[iltcr-valuel =F Retl.lrn

For example, if you type

!he sy.scem uses the 7F 1her formal.

Format or stc red data

El EZ E3 E4 ES E6 E7 E8 E9 EA EB EC
6162 63 64 65 6667 68 69 6A 6B 6c
21 22 23 24 25 26 27 Z8 29 2A 2.B 2C

Thi~ means thal when you search for any pauern in memory, you muse know which
format is used If PF is used, abc: :appears in hex as El E2 ~ if 7F is w;cd, abc appears
:as fil 62 63. Thus, if you perform a pat'!ern search for El E2 E3 and the formaL used was
7F, yau will nm find me cocreCl p:ttlern..

The iriput ASCll character is MDed with the filter value and then .stored in the sea.;ch
buffer.

Moving data in memory
You can copy a block of data stored in a range of memory Joe.al.ions f.rom one area in
memory to another by using lhe Monitor's Move (M) command. To move a range of
m~mory, you mu.st tell lhe Monftor both where lhe data values are now situated in
memory (the source locations) and wh.ere che data value..s are to go (che destination
kx:~tions). You give this information lo lhe Monitor by providing three add.re5scs: lhc
id.drr:ss of I.he Firal local.ion in I.he desli.nat..Lon and lhe adwesses of the starting and
~nding locations within che source range. You peciry lhe starting and ending
addresses of lhe source range by sc pa.rating them with a pe:riotl. Yoo separate che
~qinali.on address from lhe range addresses with a lcss-lhan chruactcr (<), which you
mJy th.ink of as an arrow pointing in lhe direction of the move. finally, you tell the
Mon[tor lhal lhis is :a Move command by ~yping che !euer M (in ei1.her lowerose or
uppercase).

rvklnltor memory commands 31

·n1e format of the complcrc Move command looks like this:

(<kslfnatitm l <(from_ address) • [ro _ addresS} M

To move data from S.1000 through 1009 to locations beginning at 2000, type. the
destinaLion, the starting address, and lhe endi.ng addrcs,) followed by I.he letter M.
Note that as you type the ddress values, the wmds in braces and lhc hrace rhernselves
are replaced by lhc hexadecimal adillesses that you wi h co use. The example use.
bank 00 as both the source and the destination. You can, however, specify the
complete bank address within either or the ~nurce addresses or in c:ht dt: lination
address, because everywhere lhal he Monitor rcquir; s an address, it wiJl also find I.he
combinaLion of [bank/ addresS, acceptable as well.

T2000<tnoo.1009M Re.turn

Now examine Lhe data you moved by using the examine procedure. Type the starting
address and the ending address and press Return:

'1. 000. 2 009 Return

The data returned to the di play looks the same as it dld when you examined locuions
S 1000 through $1009:

00/2000:CF CB C3 C5 60 61 62 63 6~ 65-0HCE ' abcde

'!,'he Monitor moves a copy of the data Mored in lhc source range of locations to the
destination location . The values in the source range are left unch:mged. 11le Monitor
remembers I.he last location in the source range a. I.he last-opened locatlc,m and the
firsl location in Lhe source range as the next-changeable locauon. lf lhe second
addrc · in lhe source range is less than the fir t, then only one value (that of Lhe first
local.ion fn the range) wm be moved.

lf the destinalion address or the 1ove in.struction is inside c.hc source range of
add.re ses, then SI.range (and sometimes wood rful) things happen: The locations
between lhe beginning or the source range and the destination address a.re rreat.ed as a
subrange, and the values in lhis subrange are replicated 1:hroughoul lhe source range.
The section •special Trick With the Monitor" taler in Lhis chapter provides an
inte.resting application of this reatuce.

32 Chapter 3: System Monitor Firmware

Comparln·g data in memory
You can use the Verify M command lo compare two ranges of memory using the
same formal you u lo move a range of memory from one place to another. In facL, a
Verify command can be used immediately after a Move command to make sure lhac
lhe move was uccessful.

The Verify command, like the Move command, needs a range and a destination. The
syntax of the Verify command is identical lo the Move command, except thal you type
a v in place of an M:

UiesJ'ffiati<m_ adcirii!Ss} < {s tart1'ng _addrossJ . 1endtng_address1v

The Monitor compares lh values in the source locations with the values in the
locations, beginning with the d lination addr ~. Tf any values don't match, the
Monitor d.ispla ys the firsl address at which a discrepancy is found and the l wo values
that differ. ff you e:nt.e.r the example shown for the Move instruction and r.hen change
one byre at the destination, you can use the Verify command to find lhe discrepancy.
01ange the first location to hex 41 (it was hex 56) and lhen use the Verify command:

*2000: ~ l Return
~20 00<1000 .100 9V Return

If there are no discrepancies, you will not gel a display. Jn I.his exarnpte, because you
will ha\>lc caused a disc.repanc:y, the following is displayed:

00 / lllOO: 5 6 (U) --$2000

'-s 1000

Location · 1000 contains 56; location $2000, however, contains 41.

The Vet'ify comrna.nd lea es the values in both ranges unchanged.. The last-opened
location is me last location in the source range, and the liCXl·changeable location is
the fi r l localion in the source range, jusl as in the Move command_ If I.he ending
address of che range is le:ss than the starting address, the values of only the firsl
local.ions in the source and destination will be compared. Like the Move command,
lhe Verify command also does strange things if the destination address is within the
rouroe range. Again, sec the ection "SpecfaJ Tricks With the Monitor" later in chis
chapter.

rvtonftor memory oommond$ 33

Fllllng a memory range
You can fill a memory range with a specific value by usmg the Monitor Z-ap (Z)
command. You teH I.he Monitor where and how to zap memory by providing lhree
pjeces of Wormation: the value to fill, the carting address, and the ending addres .
You sep:uatc Ille va1uc from the .starting address by u .ing a lcs.Hhan character(<).
You separate lhe begiruting and ending addresses of lhe range with a period. The
syntax for Zap i5

(vaiue~ < ur.arti'n,!L 4dill'ms} • (il'Ming_ dddre.ts) z Reru:rn

When Zap operues, the value you have selected is rilled inlo lhe enlire range,
including the starting and ending addresses.

Secrchrng for byf,es in memory

The Pari:ern Search (P) command allows you lo search for om: or more bytes
ChexadecimaJ values, ASCil characters, or a combinalion of che two) in a range of
memory. The symax of lhe pa aern search instruction i.s as follows;

• \I ualu.e(f) er" liwal 11.SCff" or 'fltp ASCII'}\< Utarlfn8_address. endi'2,g_addross l .P

The byre values are entered end lD end with no intervening spares . This formal Ls
required by the Pactcm Search command because you are looking for a string of
vaJucs. I\'me 1fou you must enter leading zeros. For example, a. search for the scring of
c.h<nacters OD followed by OA between locac:ions 1200 and 1400 would be entered as

* \C!:l 0 1'. \ < U OO. l f, OOP Return

1[you are looking far a s1.ring of characters, you can enter the chamctcrS dclururcd by
double quotation matks as .shown here:

*\ " Mr . Good.ba r " \ <: 12 00. H OO E' Rel.Um

If I.he paltern is found, the beginning Jocation Is di~played. For example, If lhe pattern
is located with its Firs byte at locauon $1300, the following is displayed

00/13:JO : 41 -A

34 Chapter 3: System Monitor Firmware

Regist,ers ond flags
The Apple IlGS system uses a number of registers and control nags (bilS) to perform its
•·:lrious functions. Table 3-3 li.'5t.s l.liese regis ters and flags.

Table 3·3
Registers and flags

Regfsler Flcg

A Accumulator M Machine stale
y Index rc:i.? [SLe r 0 Qua ~mire . r..a te .
x Index regjstcr m Accumulator motlc
s Stack pointer x Index mode
D DirecL :;,ero page e Emufa.lion mode
p P race sor Slalus L Language-card bank
B Data bank
K Program bank

The A, X, and Y register.; arc the workhorses of che a:;.:;cmbly-language program.mer.
The P rcgisI r con Lains al I of the system Sb tus flags 'The D rcgrsrcr is i:he 65816 direct­
page register that e<Jntrols lhe placement of the :r~e.ro page of the processor. The S
register is lhe stack poinu:r. The K regtsLer contains the upper 8 bits of the program
c:oont.er bccau . ..e the 65816 operates anywhere in a 24-bic address . pace.

In books that dcscr~be programming for the 65816, che upper 8 bjLc; of the acamrnlator
are sometimes called l:hc B regLrter. These programming books also refer to lhe 16-bit
aca.imulamr as lhe C regtrter, the program bank register as PBR (I.he upper 8 bit.s or Lhc
program cou.ntcr), and che cl.ala bank regist:CT as DBR (lhe upper B b ilS applied lo the X
and Y regf rers). For convenience, the Monitor rcn mes lhese registers :i follows :

c The Monitor 13 register display show the DBR contents.

tl The Monitor K registe r display shows the PBR contents .

1:1 The Monimr A regiscer display shows I.he 16-bit accumulawr conlents, whether 8 or
16 bits.

o The Monitor does not separaH:~ly di ·play the upper B biis of the accumulator.

?\ot.c: I.hat the Monitor does nol display the current contents of the program coumer
reg~ter. If you ~'aflt to srep or trace a program, you must C!f';!ate your own scpa.ratc
routine to dlsplay the program counter comcnts along with these cl.her regis ters.

Registers and flogs 35

The M register represents !:he machine state. The Individual blls of thl" register re
described i.n the summary at the end of th[s chapter. You can find an in-deplh
description of the meaning of these bics i.n che Apple IJGS Harctware Reference.

The Q register, also caJled lhe Quagmire register, is not actuaUy a hardware
machine reg.isi:cr, bm a pseudoregister made up of control bits located elsewhere in
the sys1.em. One bit (bit 7), selects high-speed operation. (Earlier Apple IT series
computers operated only ac 1 MHz; I.he Apple IIGS can operate eil.her al t_O MHz or 2.8
MIIz.) Bits 6 LO 0 enable and di.~abie various hadawing opLions. Shadow-Log, when
enabled, writes the same data LO banks $00 (or $01) and SEO (or .$El) in selectt.::d areas,
as defmcd by the individual hadowing bil.S.

The environment

The complete set af registe.rs and flags is called the emiironmenL When your program
encounters a break or another kind of interrupt condition, I.his environment ls saved
by the Monitor. When you issue a command lo resume execution, the environmenl is
restored as It was when the inlcrru pt occurred Your program resumes as though
nol.hlng had happened. !f you change the contents or lhe rcgiswr and flags chat are
dlspl:tyed, then the changes become the new environment that your program
encounters when it again begins to cxerutc. You also change th, regislers and flags LO
sec up new cnvironmenL for a program thaL you might write and execute using che Go
command, discussed later in lhi chapter.

Examrning and changing regtsf,ers and f[ags
The microprocessor's register contents change c:ontimwu.sly during execution of a
program, such as lhc Moniror firmware. Using the Monitor, you can see wh~t the
.register comenl.'i were when you invoked lhe Monitor or when a program you were
debugging stopped at a Break {BRK) or a COP instruction or as a result of an
unserviced hardw:ne abon condition.

36 Cticpter 3: System Monltor Flrmwcra

table 3--4 lists the commands lh;.:it relate to system registel'S.

Table 3·4
Commands for viewing and modifying registers

Examine regi.r;tcrs
Modify accu muJator
Modify X register
Modify Y registe.r
Modify D register
Modify DBR register (bank)
Modify program bank rcgisw:r
Modify stack pointer
Modify processor status
Modify mac.h.ine-stace register
Modify Quagmire register
Modify 16/8-bit accumulator mode
Modify 16/8-bil Index mode
Modify n.ative/emulalion mode
Modify language-card bank
Modify ASCJT filter mask

Command rormct

Contml-E
{ r;al16} =A
{ val16} •X
{va/16} •Y
{ val16} .. D
{ r.iall •B
{ vall=K
{ val16}=S
{val) =P
! uall ""M
{ vaJI =Q
{ vall =m
{ rlaJI =x
{ rJaJI =e
{ va/I =L
{ vall •F

When you call the Monlcor, it. stores Lhe contcnIS of lhe microprocessor's regiscers and
flags in memory. The regisrcr.s and naw; are stored in the order A, X, Y, S, D, P, B, K,
M, Q L, m, x, and e. When you give the Monitor a G instruction, the Monitor loads
the reglsters in this same sequence before it cxecures lhe first instruction in your
program The m, x, and e flags are pan of I.he processor status register (P) However,
because lhe rcg,l.ster.; and nags are reJoadcd in lhe sequence shOVlfn, whatever value you
have placed in m, x, and c will override any such value you might have placed in P.

Nole: If you set I.he value of lhc c Oag io 1, the 65816 automatically sets lhe value of m
and x to l. Th.ii; pulS lhe processor into 6;02 emulation mode, forcing it lo have a.n
8-bit accumulator and index regislcrs. Additionally, lhe upper 8 bits of I.he stack
pointer are forced to a value or 01.

Pmss Contro1-E and lhcn Return lo invoke the Monitor's Examine msLrnc.Lion. This
action displays I.he stored register values and flags and sers the location comai.ning lhe
conteniS of the A register as the next-changeable location. The example follows:

•concro~-E Return

The registers and flags are displayed as follows:

You can change the values in any of these locations by typing lhe new value, an equal
sign(=), and the leuer for the register or flag co affecl and pressing Return. In the
following example, the fi.rst [WO locations are changed, and the registers and 0ag bits
are again displayed to verify lhe change.

Regfsters and ftags 37

Change A to the vaJue 1234:

Change X m the value 006A:

"'::l06A•X Return

Execute the Examine instruction:

•Comrol-E

The registers and flags arc displayed to verify Lhe changes:

A .:2J~ le=00611 '!-CJCB S=OlF4 D-0000 E'=OQ B=OO K-00 M~Oc:: Q ~ BO L• l m-! x-1 -:i.

O:• Note.: !f you arc using the Monitor lo debug a program running in 6502. emulation
mode, lhe values for the micropmccssor registers will rc\rert to their 6502.
equivalenl.'j, For example, m ·A, X, Y, and S rogislers will be able to hold onJy 8
birs each. Even iJ you specify (and display) a value thaL exceeds 8 bits, only Lhe low 8
bits of lhc value you enLCr will be used when die system resumes 6502 emulation_

Summary of register- and Ho·g-modmcation commands
The following commands can be used to modify che registers and flags_ Note I.hat all of
these are case sensitive. To change i:he register you v.<:anL to change, you musl use the
case (upperc~ ·e or lowercase) shown in the registers and flags Jio>play. The case of !he
letters is Lhe only vi.tay lhe Monitor can dls~inguish bctween flags and rcgisrers in this
situation (for example, compare X and x and Mand min Lhe following list).

Change to

Accumulalor
X register
Y register
D register
DBR re&i.ster (bank)
Program bank register
Stack pointer
Quagmire regiscer
Machine register
rn nag

x Oag

c na.g

Filter value for ASCH modes

language-card bank

Syntax

rvol161•A
(val16J=X
(val16J •Y
{Val16} =D
{ vatJ •R
{vall .. K
{ r,•al161 S
lvalJ =Q
t val) =M
I vaO •m (VQJ = 0 for 16-bit accumulator,
val= 1 for 8-bil accumulator)
{ ualJ •x (tJaJ .. 0 for 16-bit index rcgi..o;Lers,
val = 1 for 8-bit index regiS[ers)
(val I =e (val= 0 for native rnode,
val= 1 for 6502 cmula1io11 mode)
{val} =FF (val= any value from 00-SFF;
default val= FF')
{ uan •L (val • 0 or 1)

38 Chapter 3: system Monl or Frrmware

Miscenaneous Monitor c,ommands
Other Monitor commands enable you to change the viclen diiiplay format from
ormal ro inverse and back and lo assign input and output to accessories in expansion
lots. Table 3-5 lists these misccUancous commands.

Ta.tile 3·5
Mlscelloneous Monitor commands

Besin inver e video
Begin normal video
Change lime and dale
Display time and dace
R direct jnput links
Redirect output Unks
Change screen display to c:e:x:L

Change cursor
Coovert decimal to hexadecimal
Convert hexadecimal lo dcdmaJ
Perform hexadecimal math

Add
ubtrar:t

MulLiply
Divide

Jump 10 cold-start B SIC
Jump to wa:rm-sta.n BASIC
jump lO user vector
Quit Monico.r

Inverse and normal display

Command tormat

1
N
=T=mmldd!yy hh: mm=~
=T
{ slotJ Comrol-K
{slot) Control-P
Conlrol-T
Con tro 1.11. f new_ cursor_ character}
=rvalIO}
I ual64J =

I va/64} + { val64}
I val64 l - { val64}
(ua/64 I • I val64}
{ ua/641 r val64 J
Control-B
Control-C
Control-Y
Q

You etn control lhe setting of the inve~ e/norma] mask location u ·ed by the COtrr
subroutine from the Monitor so lhat alJ of the Monitor's outpul will be in inverse
form t The COUT routine is de cribed in Chapter 4, "Vid o Firmv.'<lre.• The inverse
command (I) scrs the mask so rh tall sub.scquenr fnpul and ouLpul are displayed tn
inverse formal.

•r Return

To switch the Monitor' output back to normal form.at, use the lormal command ('.'l) .

.. N Return

Miscellaneous Monitor commands 39

Working with time ond date

You can display or set the time and dale directly from the MonJtor. (Normally, time
sci.ting is handled lhrough the Control Pa.nc1, wh.ich is descn'bed in Appendi~ G, "The
Control Panel.")

Here is lhe formal for displaying che time and date:

T Return

If you want to set the time and date, use Lhc following format (for decimal number
entry) :

=T~nn/dd/yy hh:mm:ss

where nn is I.he monlh (range 1-12), ad is rhe day Crnnge 1-31), yy is lhe year (range
0-9CJ), hh is I.he hour (range 0- 23), mm is the minutes (range 0-50), and SS is the
.o;econds (range 0-59). The delimiter slash (/) and colon (:) are shown as c:he
suggested form c because these delimi1ers conform to what a us.er normally expects LO
see. However, any delimiter other Lhan an aposll"ophc (') can be used to separate the
values emered

Redirecting input and output

TI1e Primer command, activated by Control-P, diverlS alJ output normally desltned
for the screen to am interface card in a spccined expanc;ion slot., from 1 to 7. There

musr be an interface card m the specified sloe or you will lo e control of me compuier
and your program and variables may be lost The formal of r.be command is

(slot-number) Control-P

A Printer commanJ lo s?ot 0 v.riU switch the sueam of output characters back to the
Apple llGS video display.

Don't issue the Printer command using a slm value of O to deactivate the SO-column
firmware, even Lhaugh you used this command co activate it in slot 3. 111 command
works, bu~ it just disconnects the firmware, leaving some of the sor[switches sec fo r 80-
column display

ln cnuch the same way chal the Printer comm.and ·witches the output stream, the
Keyboard command substitutes the interface card in a pedfied cxpa nsion slm for Lhe
normal Apple IlGS inpur device, lhe keyboard. The format for I.he Keyboard
command is

(slot-number] Conrrol~K

pecifying slot number 0 for lhe Keyboard comman<l directs th· Monitor to accept
inpui from the Apple HGS keyboard.

The Printer and Keyboard commands are the equivalents of BASTC commands PR#
and IN#.

40 Chapter 3: System Monitor Firmware

Changing fhe cursor character
You can change lhe Monitor curso.r from a nashing blank spa<;: -. co whichever character
yoo wish. Here Is lhe format for changing the cursor:

Gonu'oJ-~ [new_cu~o:r_c:haracter}

Here is an example mat sets an underscore(_) as your new cursor character:

The underscore now appear as the cursor characler. To restore Lhe original cursor,
specify that the new cursor is a dclci.e character,

Converting hexodecimar and decimal numbers
You can convcn. up LO 8-digil hexadecimal numbers to decimal valul'.s. The synt::i. is

1vaJuc1-1 Rclurn J

For example, type

Hexa<lecimal $000F .is converted Lo decimal 15:

15 (+1~}

You can also convert a decimal numbc.r to a hexadecimal number. The syntax is as
roUow :

•[willel Retum

For example, lype

~c0Dl5 Ucium

Decimal 0015 is converted to hcxatl ·cimal $0000000F:

SOCCOOCCF

Mrscellaneous Monltrn commands 41

Hexadecimal math
You can use Lh.e Monitor to perform hexadecimal math The Apple UGS Mon.iLor on
handle 32-bit addition, subtraction, multiplkatlon, and division operations. The
sync.ax for Lhese operaLions is shown below. Note I.hat mulUplicalion show a 64-bil
result, and division display:; both I.he remainder and the quolienL Notice abo that
b nk-:iddress information provided .in I.he entry of Lhe data is ignored during the
cakulaLio11.5 , If you wish lo actually perform gddrcs.s calculations, you can convert
your bank and add.re.:; into a 6-digithexadedmal quantity and use lhat for the
calculations {"Just leave oul I.he forward stash)_

Operation

Atldiiion
Subrn1c~ion

Mult:ipl.icallon
Division

Sy ntax

[val64} + { 11al61) Return
[val641- { val64J Return
lval64} * (vaf641 Rclurn
(val61 J _ l va/64J Return (An underscore character ralher than
the traditional forward slash is used to specify division.)

Herc are a few examples:

•12.3i:+12J~, Relum
-> S00002H9
*1234 •.J-4 Rc:tum
-> soooc:2Ge
• 3 ~ + 1 Rerurn
-> SOOOOOOJ5

·1·12-2222 Return
-> SFF'FE'E.E:O
• 12 ' 3~567 89 Return
-~ $000000003AE1~7A2

* 123 ~56"18 _120 lletu m
R-> soooooooa o-> soo ones
'"012 3-'-1/23 Return
-> $0000004 Ii (lfank-<tddrcss information was Ignored.)

42 Chapter J: Systern Monitor Firmware

Tool Locator call
f'trom lhe fonitor, it is possible to caU lhe toolbox routines. However, lhe toolbox
routines will most often be used by programs ralher than by keyboard access lfilough
the Monitor. The syntax for lhe Tool Localor call is listed jn dc~ail in the ummary al
the end of this chapter_ If you wish lO use lOol calls from the Monitor, see the
Apple IIGS Toolbox Reference for details about the tool numbers and parameter
requirements for the tool of your choice.

A an example of a possible use, here are two sample tool calls. Th frr~t call, once
tn1ercd, allows you to rype a line of text, foUowcd by a carriage return_ This first call
returns a count, in hexadecimal, or the number of characters you typed. You will chen
tore I.he number you receive into a memory local.ion and call another tool I.hat wlll

:retrieve and type lhc characters to the display.

This first tool caU reads Lhe keyboard , sloring suc:.c:essive c:h:a.racter in local.ions
l:eginning in memory location 012080 until you type a carriage return character.

\C 2 0 0 0 l 20 0 1 Ot!F 0 BO 0 1 H C\Il Return

M!Er you inpul some text and press Return, lhc Monitor resporids with a hex count of
the number of characters you typed. If you iyped

IBUi: AIU'. MY LETTERS. RcLum

the Monitor res ponds

•
1ow type the following line after the Monitor prompt to stare I.hat number you

received into memory to sec up for the tool to type the lext. The hex vaJue that you
enter in this mcmory-modific.alion command ls the same value lhaL the lool returned
as your character count.

01/2080: 15 Return

The following command asks a tool to type lhc te.xt:

\q 0 0 l 20 80 lC C\U Retum

Bock to BASIC
Use the BASIC command, Control-B, to le-ave the forulor and enter I.he BASrc tha t
was active when you emered the Monitor_ Normally, this LS Applesoft UASIC, unles
you delibera tely switched LO Integer BASIC. Note that if you use this command, any
proyam or variables that. you had previously entered in DASIC will be lost. If you want
lo ~enter BASIC wil.h yom f}f@ViOU§ f)fflgmm imd vaF~llbl@.§ l.iitact, uge tlic CoHtinue
BASIC command, Conlrol-C.

If you arc using DOS 3.3 or ProDOS®, press Control-Reset or use lhc Monitor Q CQuiO
command to return to the language you were using with you.r program and variable
intact.

Miscellaneous Monl or commands ll3

Special tricks with the Monitor
This section describes ·ome more complex ways of using n.hc Monitor commands,
including

o placing mulLiple commands on a single command line

CJ filling memory with multiple-byte pattern

c:: repeating commands

o creating your own commands

Multiple comma1nds
You can pul as many Monitor commands on a single line as you like, a long as you
separace lhem with spaces and the total number of characters in I.he line is less than
254. Adjacent single-le tter commands uch as l, S, l, and N need not be separ:l!led by
spaoes.

You can freely mbc aU of lhe commands except the Store(:) command. Becau c the
Monilor rakes all value following a colon and places them in consecutive memory
Jocations, Lhe la.st value ln a Score command mus t be followed by a letter command
before another address Ls entered. You can use lhe Normal command as the letter
command in such case·; it usually has no cffe<.:t on a program and can be u ed
anywhere.

In the fallowing example, you display a range of memory, change it, and display it
again, all with one line of commands:

•1300.13~7 13CD=3B 39 1 N 1300.1302 Return
00/1300 - DO 00 00 00 00 00 00 00 38 39 01-• . 09

if lhe MoniLOr encounters a characler I11 I.he input Linc that]l does not recogn.l.ze as
either a hexadecimal digit or a valid command character, il execute all I.he
commands on the Input line up to lhat character. It then grinds to a halt with a beep
and ignores the remainder of I.he inpul line.

Chap er 3: System Monitor Firmware

Filling memory
The Move command can be used lo replicate a pal.tern of values throughou[a range of
memory. To do this, first Slore the pattern i.n the first locations in l:he range:

·uoa ;1:. 22 33-. "3

Remember the number of values in I.be pattern; in this case, it is 3. Use lhi<i number to
compule addresses for lhe Move comm.and, like this;

(sJart-111.unberl < {.l'farT} • ! end-number} M

This Move command first replicates Lhe pat.tern at che locations immeclialely fo1lowing
the original pattern, then replicates that pauern following Lhe first replication, and so
on until it fills the entire range:

*i303<1300. l.J34M
•13co.1311 Re.tum
00/lJOO - 11 2~ JJ 11 22 33 11 22 3.3 11 22 J3 11 22 33 l-.".3. 11 3."3.".3."J.
00/!JlO - 22 33 11 22 33 11 :U J3-"3. "J. "J

You can perform a similar trick with lhc Verify command to check whether a pauem
repeats iiself through memory. Verify is especially useful fo.r verifying that a g~ven
range of memory locations aU contain the same value_ ln lhc following example, you
ll.rst fill the memory range from $1300 to $1320 with zeros and verify .il; you then
change one location and verify it again:

•1300: [)

•130lc:3C0.132CM
•1301<l3t0.1J20V
0 l3J~: 02
•1Jo:c1300.1~2ov

lJGJ -

1304 -
00
02

(02)
(00)

The Verify command detects the discrepancy.

Special trlcks with tha Monitor 45

Repeating commands.
You can re-ale a command line tllal continuously repea15 one: or more command<;_
You do !:his by beginning lh pan of the command line tha[you wanL 10 repeal with a
leuer command, such as N, and ending il w.ilh lhe sequence 34~n, where n is
hexadecimal numbe.r I.hat specffies Lhe position in Lhe line of lhe command where ~mu
want lo start re pea.ting_ For the fict character in I.he line, 11 - 0. The va1ue for n must be
followed by a space for me loop to work properly.

Thi-;: u-ick takes advantage of the fact. that the Monitor uses an index register lo S[cp
through lhc inpul buffer, .start.Ing al location $0200. Each lime the Monitor executes a
command, it stores lhe value of the !ndex al location .$34; when that command is
finished, the Mon.ilor reloads the index register with lhe value at location $34. By
malting the last command change lhe value at location $34, you change this index so
lhat the Mn11 itor picks up the next command character from an earlier poinl i.n lhe
buffer.

The only way lo sEop a loop S1Jch as tlli.s is to press Comrol-Rese.l; that is how the
foll owing example ends:

- N lJOO 1302 3~ : 0 Return
1300 - 11
1302 -

1 3 00 -

1302 -

i:;oo -
1302 -

1300 -

1302 -
UCO
D02 -
1300 -

1JC2 -

1.3C

46

33

11
33
11

33
11
:n
1-

3 3

IJ.

33.

(Control-Reset Es pre&Sed here; Lile Monitor jumps to Applesoft.)

Chapter 3: System Monh'or Rrmware

Crec:Jrting your own commands
The User command, Comml~Y, forces the Monitor to jump to memory location
$03F8- You can pul a JMP instruction there I.hat jumps to your own machine-language
program. Your program can chcn examine the Monitor's register and pointers or the
input buffer iLSelf to obtain jts data. For exa.mpJe, the foJlowlng program disptays
mro:rything on che input Hne after Control~Y. The program starts at location $0300; Ille
romm.and line !:hat st.ans wich $03F8 stores a jump co $0300 al local.ion $03F8. Here is
lhe program, follovved by a listing of the method by which it is entered into the
Mon.lcor.

The program:

1.DX 3~ ~Get the index from location $3~

~RE ~DA. :WO,.w;
;Points t~ next ch~raccer po~ition in input i~e

;Get that ch~Tacter into nccumulator
JS!l

Hilt
CMP'
BNE

COUT

HD
kO~E

;Output the character
;Poin~ to the next char~cter
;See if it is a earrl~ge return
;I! not, go qet more

JKP MONZ ;Jump to st~nd~rd monit~r entry point icall -lSlJ

Entering the program into !:he Monitor:

~JOO:A~ 34 ag ~00 20 roEO CB C9 80 DO rs 4C FF6g
•Jrn: ~c 300
•co~t~ol-Y THIS IS A TEST
THIS IS I\ TEST

Notice lb.at me ~arget addresses for the JSU (jump to subroutine) instructloru;. (value of
he?: 20) are entered directly as ilicir '1-digit hexa.decimal values ralher than as separate
byte pairs in Feverse order as would normally have been required for the system
Monitor in machines prior lo lhe Apple UGS. You can enler fuU 32-bi~ addresses in
this manner if you wish (up to 8 hexadecimal dlgits, rormlng a 32·bit quamity).

Special tricks with the Mon1tor 47

1Machine-la,nguag,e programs
The main reason m program in machine language is lo ge[more spec d. A program in
madlirJe language CiUI run much faster lhan the same prograrn written in high-leve]
langua e uch as BASIC or Pascal, but the machine-language version usually takes a
lot longer lo write. There are other reasons to use machine language; You mighL want
your program to do something that isn't included in your high-Jevel language, or you
might jus1 enJoy lhe challenge of using mac:.hlne language co work directly on the bits
and bytes. It is highly unlikely that a .sedous software developer 'Will use the mlni­
assembler to produce large programs. However, the mini-assembler is a useful tool
for quickly checking various basic cone p . Sometimes just lhe ability to exa.rnin
memory i very handy.

+ Note: If you have never used machine language before, you'll need to learn th
lan.guag of I.he 6SC816. To become proficienE in machine-language programming,
you'll. ha e to pend ome time working with il and s1l.J.dy <U ! asc one book on
65C 16 and perhaps also 6502 or 65C02 programming.

You can gee. a hexadecimal dump of your program, mo~ your proBtam around in
memory, examine and change .register contents, and so on u.s1ng he commands
de cnbed in the previous sections. The Monitor commands In this , lion arc
intended speci.fically for you rouse in creating, writing, and debuggfr1g machinc­
language programs. Ta.bl 3-6 lists I.he commands that relate lo p:rogram creation and
debugging.

Table 3-6
Commands for p rogram execution and debugging

Co mma.nd fypa

Go, (b gin) program in bank $00
Exerute from any memory bank
Re core regJsters and llags
Resume 1e:xeculion
Perform a progtam tep
Perform a prog:ram trace
Disasscmb] Oist)
Enter mini-assembler

Command format

{start_ address I G
(start_addre six
Concrol-R
{ starl _address} R
{ sta rl:_ address} S
{start_ address} T
{ sta rl:_ address) L

d8 Chapter 3; system Monitor Firmware

Running a prog1rom in bank zero
The Monitor command you use lo starl e erution of your machine-language program
is the Go command, When you type an address and I.he !eL[er G, che Apple IlGS
reslores aU of the machine regi cer: from their stored locations and begins executing
machine-language ins1ructions la.rring al lh specified location. lf you type only G,
execution starts at lhe fast-opened local.ion. The synt.ax of lhe Go command is

{sUlrt_aaa·~ss}G Return

The Monicor 1.reat.s this program as a ubroutine and executes a JSR to lhe program. If
you want the routine lo end by rchlrning control co the Monitor, your program mu t
end with an RTS (relurn from subroutine) instruction to transfer control back to the
tonitor.

The Monitor has some . pccial !ea.cures £haL make il easier for you to wri e ml debug
machine-language programs; but before you learn about l.hese, here is a mall
machine-language progflm lhal you can ~n ~~if!ll ~!!!Y, ~~ ~~~o!~ M?.~~l~~

""""'"'*'"" ~ ~ F-
com.mands already described. Th.e program in the example displays the letters A
through Z. Store it starting at loca\lion $0300, exam.inc it ta be sure you typed it
correctly, and then lype 3 O OG to slart it running.

300 :A9 Cl 20 FDED B 6 9 l c:9 OB DO F6 60 Retum
T300G Return.
abcdefgh i jf;lrnnopqrsl UV\olxyz

This is the assem ly code that represents the preceding hand-assembled program:

LOA Cl ;Place l!ISCil for "A" lnto accumu a or
OUT JSR COUT ; Not.e: Mini -as~ciJr.bler does not use l b ls

CLC
l\DC U
CMP DB

!LE QYT

;Add 1 t o contQnts of accumulato r
; Cornpar cont.ent:.s t.o a value of ASCII (" Z" l)

;It n9t, ge ba£~ anrt outpu~ -gnum v~lu~ aijain

The G instruction works only for code in bank $00. The system beeps if the use:r
specifies any bank other than $ 00. The G instruction scrs up a JSR lO lhe code and
expects this code to end in an ltTS.

Maotlln&- anguage programs 49

Runnrng a program In other banks of memory
You can run programs in banks other than bank $00 by using the X command instead
of the G command. The X command restores all of the machine regi~ter from their
stored locations and begins executing at lhe specified location. A JS L insuu ction
(jump Lo subroutine long) is performed inslead of a JSR, and the u5er'.s code i.s
expected lo end with an RTL (mb.Jm from .subroutine long)_ The synlaX of the X
command is

[.tti:.1rt_ atid,-ess} X Remm

Re,suming program execution

You can resume execulion of programs halted by a deliberate BRK (Break) inslll.lction
or Trace command by using lhc R command (Resume). Run programs in b:a.nk.s other
than bank $00 by using lhe X command inscead of the G rnrruru.nd. The R command
restores all of the machlne regisiers from lheir stored local.ions and begins executing
at lhe location you specify. A JMP insrrucli.on is performed instead of a JSR or JSL
because che Re.sum command (l..5.5Ume:s thal you do noE imend to return to lhe
Monitor.

Stepping through or f'raeing program executron
The Apple IlGS Monitor indudes two commands for slepp~ng through a program one
insi:ruction :at :a. time and for Lracing program execution (performing multiple steps)_
You put lhe Monitor into Step mode by using chc S command. Yau pul lhe Monil.Or
into Trace mod by using the T command. CTbese commands, !hough present, are
not fully fmplemented.) The Step command princs "STEP" and rc[urn.., control tn
the Monitor_ The Trnce command prims "TRACE n and returns coauol lo the
Monitor. If you wanL to implemenl your own Step and Trace functions ~ s~mpiy modify
the Slep and Trace vector locations lo point to your own custom version of each
routine. The:;e ve·aors are shown in Appendix D, ~vectors. ~ The formats For SLep and
Trace are shown in the summary at I.he end of this chapter.

50 Ci1aptet 3: System Monitor Flrmwore

The mini-assembler
The Apple IJGS mini-assembler included in the Moniwr program allows you m cmcr
machine-language programs directly from the keyboaird. ASCH characters or hex
values Cln be entered into a mini-assembler program exactly as you enter I.hem in Lh~
Monitor. The mini-assembler doe5n' accept labels; you must use acruaJ values and
addresses.

When you enter lhe Illini-assembler, c.hc Monicor prompt haraner changes from
to l (the mini-assembler prompt) and assembles the first li.ne of code (if a line of
code IB typed on the same Hne as the exclamation poinc thac caused the mini­
assembler to be entered)_

Starting the mini-assembler
To st.an the mini-assembler, firs t invoke the Moni tor rrom BA TC by lyping

C'all -] 51 lklUrn

Then, from the Monitor, type

I Retnm

or

J f bbl addr) : { cyx;od~} I operand] Metum

Using the mlnl-assembfer
The mini-assembler saves one address , lha of lhe program counter. Before you s1arr
typing a program, you musl set lhe program Cot111ter t.o point 10 the location where you
wmt l:he min.i-assembler to store your program_ Do this by typing 1.he address
followed by a. colon _ Then t)rpe the mnemonic for the arst instruction in your
program, followed by a space and the operand of the instruction.

! 300 : r.ox I 02 Return

The mini-assembler convctl'> the line you typed into hexadecimal format, . tores it in
rncmnry begJnning at I.he location or lhc program counler, and then disassembles it
again and di pby lhe disassembled line. The prompt is then displayed on lhe next
line.

00/0300 - A2 0 2 LDX 102

The mfnl~assembler 51

The minj-assembler is now ready to accepl che second lnstroction in you.r program..
To tell it thal you wanl the nexl i.n.si:ruction to foll°""' lhe first, don't Wpc an address or a
colon: type a space and the next jnstruction's mnemonic and operand and lhen pre.5S

Relum.

The firsc pac.e afler the excfamation paint (~) conlrols lhe nature or l:he digilS lhal
foUow:

CJ A space means you wanl lhe nexL i nslruction to foll ow lhe first

D A C(>lon (;) means hexadecimal informal.I on folJows.

o A double c1uata.tion mark (")means ASCU jnformauun follov.·::o..

o A number means an a.ddre s follaVi!S.

The f'i.rsl inscru ction is as foUows:

r LDA ~C , X Return

The mini-assembler assembles lb.al line and is lhen ready for lhe next msl.n..lction.

00/0302- BS 00 LDil\ DO, X

The following example shows the procedure for enterjng a program us.ing lhe rnlni­
assembier. The instructions you cype a.re shown on a line with the prompt cha.racre.r
(1); the assembled display is shown, in each c:a.se, on a line wilhout a prompt
character .

!JOO:LDX ~02

oa;o:rnc- A;;l 02 LOX ~02

! LDA C,X

00/0]0.2 - B5 DO LDA oo, x:
l STA $10,X
00/030~ - 95 10 STA 1 a, x
! DEX
00/0]Q6- CA DEX
! STA SCOJO
00/0JO"I - BD 30 ca STA C030
! B~L SJ02

00/030i'I- 10 F6 BPL 0302
I BRl< CD

00/0JOC- Do 00 BR"' 00

.-_. NOte: Don'L forget tlle space aflcr lhc exclamation poinl The program needs Lhe
space afier cfte exfamation point to follow lhc address precedent seL by Lhe initial
ins lru cti on.

52 Chapter 3: System Mori ltor Fl rmwa re

H you want LO enter a. program in hexadecimal notation, you must stan. in l:he hex
mode, as the following ,example indicates:

11000= :23 2~ 25
:60 61 Cl

If 1tn instruction line has an error In it, the mini-assembler beeps loudly and disp!ays a
caret (") under or near Lhe offending char.tcter in the inpm line. Cf you forget lhc space
before or after a mnemonic or Include an cxiraneous character in mi..: hexadecimal
value or address, the minj-assembler rejects the input line. 1f the destination address
of a branch instrucLion is out of the range of Lhe branch (more than 127 locations
cfurant from the adckess of the instruction), the mini-assembler flags this as an error.

To leave the mini-assembler and reenter me Morulor, press Return immedfately aflcr
Lhe ! prompt.

Your assembly-language program is now lored in memory. You can displ:ay it with
the Li.st (L) instruction as folJows:

•JOOL
l=m l•x l=LCBank fO/ll
00/0300- A2 02 LDX t!02
00/0302- B:i 00 LCl't. oo,x
00/030~- !l!i 0 STA c,x
00/0J06- CA DEX
00/0307- 80 30 co SIA CO.JO
D0/03011- 10 fl5 BPL 0302
il0/03CC- 00 00 B:RK 00
1)0/030£- 00 00 BRI< 00
CO/OJ"~- 00 00 B1U< 00 ~ft.~r Lbc oroirFiam is dlfn~cd 'fr 1 ;<;r in1;1m.-1lnn 00/IJJ - 00 00 BRK 00 15p :i ys enoug 1ncs o c e to II Lhe $C:rccn .)
00/031~ - oc 00 BRK 00
OD/0316- 00 00 BRK 00
00/0JUI- 00 00 PRI< 00
00/03111- 00 co BRK DO

The mlnl-assernbJer

Mini-ossembler instruction formats
Th mint-assembler recognizes 256 mnemonics nd 24 addre sing formats. Table 3-7
shows the address formats for I.he 6SC816 assembly language. (Mini-assembler
opcode. arc Jjstcd in Appendix F, "Disassembler/ Mini-Assembler Opcodes.")

Tabl&3-7
Mlnl-ossembler address formats

Mode Name Format

a Absolure 1234

a,x Absolute indexed (with x) 1234,X
a,y Absolulc indexed (with y) 1234,Y
(a,x) Absolute indexed indirect (1234,X)
al ,x Absolute indexed long 081234,X
(a) A.bsoJute indirect (1234)
al Absolute long 081234
Ace Accumuluor Blank
xya B1ock move 01 ,02
d Direct 45
d,x Direct indexed (with x) 45,X
d,y Direct indexed (with y) 45,Y
(d,x) Direct indexed indirect (15,X)
(d) Direcc indirect (45)
(d),y Direct indirect indexed (45),Y
[d],y Direct indlrecl indexed long [451,Y
[d] Dircc1 indirect long [4SJ
lmmediale #23 or #2345

lmplied Blank
r !Program counler relative 1000 {+SOl
rl Program counter relative long 1000 (-0200}
s Stack Blank
r,s Stack relative 10,S
(r, ·),y Srack relative indirect indexed (10,S),Y

An address consists of one or more hexadecimal digits. The mini-assembler
intcrprers addresses lhe ame way Lhe Monjlor does: If one, three, or five dlgil.S are
entered, a preceding :tcm is au comaticaJl y cnlcrcd as well. For example, the
instruction LDA #l is assembled as A9 01.

+ Note: The dollar signs($) used in this manual to signify hexadecimal notation are
ignored by the mini-~sembler and may be omiued when typing programs.

54 Chopte:r 3: System Monitor Flrmwar,a

Branch instructions, which use the relative addressing mode, require the target
address or the branch. The mfai-assembler automatically calculates I.he relati e
distance lO use in lhe instruction. If I.he targel ddrcss is more !.han I.he allowable
distance from ·the currenl program counter, the mini-assembler sounds beep,
displays a caret(") under the tar et address, and does not as.semble the line.

If you give lhe mini-assembler lhe mnemonic for an insuuction and an operand and
the addressing mode of the operand cannol be used with the insl.nlclion you entered,
the mini-a cmbler will not accept lhe line.

The Apple HGS t·ools
As you a~ creating a program, you wm very li~cly want to incmporate calls to various
Apple JIGS lOols into your program. To use the tool.i;, you need an Intimate knowledge
of the tools them..~elves. You should therefore consult the appropriate Apple l/C.S
Toolbox Referrmce manual ror information about each tool. The Monitor includes a
Tool Locator ~,11 as one of I.he commands. The format and details a.re given in lhe
cumrnand summa.iy at lhe end of Lhis chapter.

The Tool Locator command acluaUy performs a call to the selected tool , pe.rforrru the
desfred function, and provides you with debug informati.on aboul lhe data that l:he tool
provlde as return valu s.

The Tool tocator caJl kts you type a one-line command instead of requiring lhal you
crcare a program to 1cs1 lhe tool. See the Apple JIGS Toofbax Rejeronr:e for more
information .

The dis·assembler
Bccaure hexadecimal code i.5 so difli.ailt to read and understand, you may want to
!ranslale machine language back into assembly language. You can use I.he Li L
insiruction as a disassembler for chi~ purpose.

The Monitor List instruction has the formal

I J!.!:Jrt_ addre:l"S} L

The List instruction starts al the specified location and displays a fuU screen (20 Hnes)
of instru c:tlon.s. For example, if you wam to display a list of instructions starting al
location $1000 in bank 12, type

•12 llOOOL Rclurn

The disassembler 55

The following li tis di played:

0-m o~x 1-LCBank (0/1)

12/1000 : AO l!> lll LOA 1815
12/1003 : 9D 50 10 STA 1050 , X
12/1006: 9F 50 52 05 STA 055250

l 2/l 001\: 1\9 Tl 66 LDA 116617

12 /1000 : 92 :w 10 BRL 2030 ~+ 02 0}
12/1010: 00 20 BRA 10.32 ~ .;.20,

1211012: F4 12 34 E'~A 3412
12/1015: 62 10 10 PER 20213
12/1018: Bl ~5 STA [~ 5 J
] 1./ l 0 li'\. : 62 00 f'O E'ER 0010 (-1000)
12/1010 : A9 23 LDA 0023
12/lOlE"; A2 45 61 LOX 6745
12/1022 : 4F 5~ 46 02 EOR 0244.654
12/1026: DC 89 23 .JML (2309)

1211029' : 1C BE F2 JSR (E".2BE,.X)

12 /102C: 7 3 40 ADC (~0 , S),'t

12/102E : Cl 06 CMtl rn6) , 'i
12/l030 : 0,1\ ASL
1211031: 00 H BRK 2J
1211033: Bil CLV

The top line of the disassembly shows you Lhe currem 5ettings of them and x birs of the
6SC816 status register. Recall lhat you set these bits by u ing the (valJ • m and (uall =x

fonitor commands. Both affec:l the way Lhe disas5embly is performed by che
Monitor. The LC O:rnguagc-card) bank .information shows you which of !:he two
available language-card banks is currently active. You change the language-ca.rd bank
by using the { uaJ I =-L corru:rutnd.

The disassembler can disassemble all 65C816 opcodes in emu]ation and native mod~
(boLh 8-bic and 16-bil. native mode). In either native or emulal.ion mode, Lhe sjzes of
the accumcl::uor and index registers are significant. ln lmmedia'te mode, the sizes are
important for the opcodes listed in Table 3-8.

56 Chapter 3: System Monitor Flrmwo,re

Display Memory Location

~Jrom _ addr-e.s~ ~

Displays contents of memory location as

!fro m'--address } : [vai} - { ASC!l)

Display a Range of Memo.ry Locations

lf rom _ addn1ss} • ~ to address}

Displays memory.

Tn 40-column mode, type

Memory contents from $0401 in bank 20 lO .$0413 in bank 20 arc displayed in
40-coiumn mode:

;1:0 /Cl 4 0 1 rCl C2 CJ c~ C5 C6 C7 -ABCDEfG

20/0fiDB :CS C~ CA CB CC CD CE CF-HIJKLM~O
20/0 ~ lO:DO Dl 02 03 - PQ .

rn 80-<olumn mode, type

• .20/tlOl • .il,2

Memory contents from S.04-0l in bank 20 to $0'113 in bank 20 :i..re di played in
80-column mode:

2C/0 4 D l~ Cl C2 C3 c~ C5 CG Cl ca C9 CA CB cc Cb CD CF- ABCDEFGH I J KOL.."1.N O
2IT/C ~lO~ Da 01 0, 0 3 a~ OS 06 07 D2 03 D~ DS 0 6 01 DB D9 - PQ •• RSTUVWXY
20/0 ~ 20 ; El E~-abcd

<-· Note: Prim:able ASCII characters are output as normal ASCII cha~cters.
Nonprimable characters an~ oulpul a5 periods .]n 40-column mode, half a page of
memory can be displayed; in BO-column rnode , a full page of memory can be
dj -pl<J.yed .

Terminate Memory Range

Comro!-X

Terminates Display Range of Memory Loc;Hions command.

58 Chapter 3: System Monitor ~trrnware

C011riage Re urn

Performs a carriage return with no precedfag entry.

In 40-column mode, dl plays lhe conlenlS of up lo the next 8 locaUoru ln hexadedmal
tnd ASCII formalS. (Location sr.a.rt.s al la:;t [bank/ address} emered and continues
unlil !.he low nibble of the addresses being displayed equals 0 or 8.) See format of
Disp!a y Memory Lorn.Ii on com ma nd.

tn 80-column mode, displays I.he contenlS of up to I.he next 16 locations in
hexadecimaJ and ASCH formats. (Location tarts al lhe la.5L I bank/ address}
emered and conlinues until the 1ow rubble of I.he addresses being dt.~played e qual O.)
See format of Display iemory Location command.

Move, M

{ •tiruil'ion I<: t/rom_ addruS$) . ! to_addr;es.o M

tove5 data from tjrom_aaaress! through (lo_ address} to locations starting at
I destination } .

! desttnalkm t < t/rom _address I • I lo_ add,-ess l V

Compares the memo!)' comencs .sLarting at { desttnaaon I through
fdesUnatton l ({to_addr:ess - {/rom_address}) with I.he memory contents starting
at t/rom _add"Tess I through I to_ addreoss I and verifies lhal lhey are the same.

fill Memory, z

!mil q from,,,,,addres.s l . Uo_ address) z

Fills memory in lhc range {from address} Lhrough [w_aaaressl with me I-byte
value: t va/J .

PaNem S&arch, P

\[fklll) l "llremlASC/1''} ' 123t' l ! !Kl/81 \<tfrom_addniss ~ . ~ lo_ addres.5 }P

Searches for any lenglh paLtern up to 236 bytes in memory ranging from
lfrom_address J ch.rough {lo_ addres.s}; {val} can be hexadecimal, l.iteral ASCH, or
llipped ASCH. The address of ,each location where I.he pattern is found is output co the
screen foUowed by a c:arri ge return. The pattern search conlinues until the entire
range of addresses has been examined.

Summary of Monitor ln.sfructlons 59

Examine Registers

C..onual-E

Examines 65C816 reg!: rers and nag:s.

The screen di plays

A=a.aaa X=xxxx Y=yyyy S~.s.!l.!la D~dddd P pp
B•bn K Ilk M•nun 0-qq L:>l marn :.:=.l! 0'=.e

On a 40-<:olumn screen, two Lines are displayed automatlcally; on an SO-column
sacc.n, onJy one line is d.i.<Jplayed.

Change the A Register. A

Changes A rcgistc.r value m I va/161 for Resume/Go/Execure/Scep/Trace commands.
Nate.· A rnus't be uppercase.

Change X Registei, X

I E>'al16~~x

Changes X register value to I va/161 for Resume/Go/ ExecuLe/Step/Trac:e commands.
Nate.• X mu t be uppercase.

{ vaJJO'J =Y

Changes Y register value co I val16} for Re ume/Go/F.xecule/Slepffrace commands.
Note: Y must be uppercase.

f val;! rJl .. D

Changes di.reel-page/zero-page register value to { val16} for
Rcsume/Go/Exeru~e/Stepffrac:c commands. Note. D mu.st be uppercase.

Chapter 3: System Monitor Firmware

Change Data Bank Register, B

[tkllj •B

Changes data bank register value to f ual} for Resume/Go/Execute/Slep/frac-c
commands. Nole: B musl be uppercase.

Change Program Register, K

lWll=K

C!uinges program register value lO (val} for Resume/Go/Execuce/Step/Trac
commands. Nol.e: K musl be uppercase.

Change Slack Pointe,1, s
tw/16} =S

Changes stack pojnter value to [va/16} for Resume/Go/Execi.ue/Step/rrace
commands. Note.' s musl be uppercase.

Change Proces'Sor Status, P

i t.o:.dl:P

Changes processor status value w t ual) for Resurne/Go/Execule/Slep!Trace
commands. Note.' P mu:sl be upperca::ie,

Change Machine S1ale, M

{l,ol'l/f=M

Changes machtne-slale value to { vail for Resume/Go/f..xecule/Slep/Trac:e
commands. Note: M musl be 1.1ppercase.

The M bit:.~ 'are as foUows:

Bit7 = 1
Bir6• 1
Bil 5"' 1
Bit 4 = 1
Bit 3"' 1
BiL2"' 1
Bit l = 1
BlL 0 = 1

Makes alternate zero page/LC active
Makes Page 2 active
Makes RA.\1RD ae1.ive
Makes R.AMW1RT active
Makes RDLCROM active, nol read/write- read onl7•
Makes LC bank 2 aclive
Make altcma.tc ROMBANK active
Makes lNTCXROM active

Summary of Monrtor Instructions 61

Change Quagmire State, Q

tmil =Q

Changes Quagmire state value to { r.Jal! for Resume/Go/Execute/Stcp/rrace
commands. (fhe Quagmire va1ue conlrols shadowing and y tem peed).
Note: Q must be 1.1ppe.rc:ase.

The Q bits are as folJows:

Bil 7 = l
Bit6 1
Bil 5= 0
Bil4= 1
Bil 3 • 1
Bil 2"' 1
Bil 1 =I
Bit 0 • J

High peed
Stops IOLC shadowing
Always must be O
Stops auxiliary-memory Hi-Res shadowing
Stops Super Hi-Res .shadowing
Slops Hi-Res Page 2 shadowing
Stops Hi-Res Page 1 shadowing
Stops text Page l shadowing

Change Accumulator Mode, m

tmll=m

Changes ac01mul tor mode value to r val} for Resume/Go/fa::ecuce/Sreplrrace/Llst
commands. Note; m must be lowercase.

0 = 16-bit mode
l • 8-bjt mode

Change Index Mod ,. x

r wJi x

Changes index mode value to { ual l for Resume/ Go/Exccute/ Step/frace/List
commands. Note: x must be lowercase.

Q = 16-bit mode
1 • 8-bit mode

Change Emulation Mod , e

I rxdt -e

Changes emulation-mode value lO I vaO for Resume/ Go/Exerutc/ tcp/frace/List
commands. Nole: e must be lowercase.

62 CJ;apter 3: System Monitor Firmware

Change language-Card Bank, L

!a:U1~L

Ounges language-card bank value to I vat} for R.e.'Jume/Go/Exccute/Step/Trace/Li.st
wmmands. Note; L mllsl be u ppe rcasc.

C = First bank of bl.nguagc card
1 • Second bank of language card

Change FHteiT Mask 1 F

iw.I:· ~·

Changes the ASCn filte.r mask value to (val I for m..in.i-assembler ASCH enlry and
Monitor ASCH imm diale-modc: commands. The ASCU fiJter is ANDed with all ASCTI
characters entered in the Moni.wr. Affects both data encry and search conditions. Any
value from $00 lo $FF Is nlid. Note: F must be uppercase. The default value is FF.

I

Switches m 1nvcrsc v.idco ccxt dispJay. Nale; I musl be uppercase.

Ch.ange Text Display, N '(Normal)

~

Swit.ches to nonna.l video text display. Nole: N mwst be uppercase.

Dlsplay Time and Date, T

Di.splay.'.> Cl.lrrent time and daLe. Note.: T mu.st be uppercase.

Summary of Monitor Instructions 63

Change Tim and Date

- T=m:!dd/ yy hh.: m m ::;s

Changes lime. Nole: T musl be uppercase. Any delimiter except an apostrophe (')
may be used between values enlered.

Enler

Im = hours 0-23
mm • minutes 0- 59
ss = seconds 0-59
1Tn = monch 1-12
dd .. day 1-31
Y.Y • year 0-99

R'edirect Input Links, K

I slot] Control-K

Redirects input links to [SJol) .

Redirect Output Unlcs, P

{S/oJ} Control-P

RedtreclS output links to r slot)_

Change Cons.eculive Memory

t ba nil addrE"SS I : l wil J ! val} t va/J { "lilertil ASCll'' l f '/Up ASCJI•) (ua /1

Changes consecutive memory local.ions starting a[(bank! amJress) lO lhe values after
the colon (:) . Values can be in hex, literal ASCII, or flip ASCTI format.

Change Screen Display. T

Conlrol -T

Changes screen display to text Page 1, regardless of currenl s:oft-swirch seu.ings .

Chang·e Cursor

Control../\ ; cha.f'txlerl

Changes the cursor lO a {character} symbol. This comrnand is implemented ilirough
COUTJ and C3COUTI . lL is not an input command; it works only 1.h.rough the BASIC
output links. If { cha racter] is Lhe Delete character, Lhc original cursor is rcsmred.

64 Chapter J: System Moni tor Firmware

Convert Hexadecimal to Decimal Format

lw/64~: Re:Lum

Converts hexadecimal number entered to decimal number (8-digir hex number
maximum). Result i printed tarting al first column on next line.

Converl Decimal to Hexadecimal Fo:rmat

• [wl10~ Relutn

Con\llerts decimal number entered to hexadecimal number (10-d.igit decimal number
maximum), Result is prin.tcd starting ~t flrsl column on nexl line. nLries may be
signed (+/-) or unsigned ..

Amp 10 Cotd start

Cootrol-B

Unconditionally jumps to BASIC's cold-slarl. routine al ROM location $EOOO.

Jump to Warm Sfa rt

Gontro!-C

Unconditionally jumps LO BASIC's warm-stan. routine :u ROM locanon $E003.

Jump lo User Vector

Cootrol-Y

Unconditionally jumps to user vector at S03F8_

QuH Monitor t Q

Q

Discontinues Monitor operation. Unconditionally jumps to S3DO lo warm-start the
operating system.

Run a Rl'og ram • Bank $OD, G

U!arf_ address} G

Transfers control to rhe m:ichi11e-language program beginning al {start_ address l.
Sets Lhc environment from stored locations A/X/Y / S/ D/ P/ B/ K/ M/ Q/Um/ x/ e ;
pwhes RTS infom1ation on th us r's slack and performs a J lP to I s/art_ addressl
wllh RTS .informal.ion left on the slack (only works for code in bank $00 because iL
assumes user's routine ends in an RTS).

Summary of Monitor fnstructlons 65

Reset the Environment and Transfer Control, X (Execute)

! start address J x

Rcr.ricves A/XIY/ S/D/ PIB/KJMJQII.Jm/ xle data from slored locations, se those
data as the environment, push~ RTL information on the user's .i;tack, and performs a
JM'P to { sta1't_addrrm} with RTI. informal.ion on the stack (works for code in any bank;
a~mes user's code ends in an R'n).

Restore Registers and Flags

C..ontrol-11

Restores regisrers and flags lo t.he normal Monitor confi~uralioa mode. Changes
A IXIY I S / DI P I B/ K/ M/ Q/ L/ m/ x/ c.

Reset the Environmen1 and Transfer Control, R (Resume)

I start_ address) R

Sets the environment from s tored !ocaUons A/X/Y/ S/ D/ P/ B/K/ M/ Q/ J.Jnv'x/e and
JMPs ro {start_ aadress}.

Perform a Program Step, S

(.Jto.TI_ addre$$} 5

No implemented in current version.

Perfo1m a P1ogram Trace, 1'

(start_ addre-ss fr

Not implemented in currenc vers ion.

Disassemble, l (Lisf)

! starl _ tuldrrJs.> } L

DisasM!mblcs up lo 20 instructions starting al location [start _address} .

66 Chapter 3: Sys em Monltor Flrmwme

Tool Locator, U

\ lr.•le.s lo slk _ N bytes /rm st _})fl rml _ ... parmz Jtmcrion. _ tooln U

The underline character(_) indicates where spaces must be placed

bytes 10 Stk indicates the number or parameters Lhar .need Lo be pushed onto the !>tack
ro make lhe utility call LO the spccifi ·cl lool.

l:tyles_(rm S/k indicates Lhc m1mber of parameters lhc function pushes OlllO lhe stack.
That many bytes will be pulled from the slack and displayed at lhc end of lhe call.

pannl_ .•. parmz ind1cnes the paramcccrs to pu homo the slack before making the
Tool Locator call. Pararn"ters must be single-byte values For example, to enter a
of.byte address, type 00 bb hh 11, where

DO= null byte of address (sp:ice required after byte)
fJb .. bank numb •r of address (space required after byte)
hh ~high byte of address (1;pace required after byte)
11 =low byte of address space (space required after byte, before next parameter)

70 enter multip1e ASCU bytes, type 1 W', ' X' or "W", "X'', using Cilher single or
double quotation marks. Each ASCU byte is a par3meter and so musL be separ.Ued wilh
a space.

jimcHoni indicates the function number Lo be called ln the pcdlied tool.

100J indicates the Looi number to 1 e called by utility call.

The funct.ion numbers aml tool numbers Jre listed in the Apple JIGS Toolbox
Rr:/erence.

A tool error number LS always prinrt.:d along with parameters left on the stack after Lhc
tool is called. The format or the error printouc is Too l ei=ror = eeee, where f..'<1ee is
lhc value of I.he accumulator (error) after the tool call_ On errors $0001-SOOOP, the lJ
command removes and displays c..ucdy 1..hc number of b>•1.CS it pu hed onto the stack
before the call_ for error >SOOOF, no paramcu.:rs are left on I.he stack, ·o none are
~played.

Summery of oni or instruc ans 67

r 4

Video
Firmware

69

Thi.s chapter describes lhe muLines 3nd command sequences thal you use lo cont.ml
the video ouLput of text to chc Apple IIGS video :.;cr~en. The Apple JIGS video firmware
includes routines for 1ext input and output These routines are used by high-level
hnguage.s, bul can just a.o; easily bt: callt!d <llre\.'.lly From a roul.ine lhat you have written
ustng lhc mini-a ~embler Almost every program on I.he Apple IIGS takes input from
the keyboard or mouse and sends output ro the di.splay. The Monitor and BASIC
accept kc)•board input and produce screen output by using sr:andard inpuv'output

& - 4 • l J. o' U I I -•

(l/0) submutines built into lhc Apple IIGS firmware .

Using Lhe video firmware 1/ 0 routines, you can

c read keys individually from d1e keyboatcl

o read an entire hne of key enlries

i:: send characters Lo the firmware output mucinf;!s

CJ can buill-in routines tha1 control the video di~p l ::iy

When you call a routine to get an entire hnl;!., the user has the opportunity to use I.he
Backspace key and other onscrcen editing facilities lx:forc your rcmLinc :sees Lhe line.
When you send characters to lhe firmware outpul routines, most of I.he d1aractcr.s are
LF.JnsmiLLed lO the display. However, some of lhe characters canLrol Lhc display
subsyscern. These special characccrs arc listed in Tables '1-1 , 4-3, and 4-4.

Standard 1/0 links
\'(lhen you call one of the character T/O subroutines {COUT and RDKEY), the video
firmware performs an indirect }ump co an address slored in progra1nmablc mc;mory.
Memory localions used for tran-;fcrring control w ocher submulines arc sometimes
called veclors; in lhfs manual, Lhe locations used for transferring control to the 1/0
subroutines a.re rnllcd l/0 links. In an Apple HGS running wil..houl ;1 djsk, each I/O link
norm.ally contains the address of the body of the subroutine (COUTl or KF.YTN) lhal
the lirmwar calls for lhac specific form of]/0. If a. disk operating system i'> running,
one or bmh of l.hese links holds the address of lhe corresponding DOS or ProDOS 1/0
roulines instead of the firmware default values. (DOS and ProDOS maintain lhei.r own
links to lhe standard 1/0 subroulin(;!.s.)

Uy <.:ailing lhe VO subroutinc.s th.al iump lo I.he Unk addressc instead of calling Lhe
standard :,i.1broulines directly, you cm-ure Lhat your program will work properly wJlh
other software, wch as DOS or a print.er driver, ihal changes one or both of Lhe 1/0
J[nks.

For the purposes of this chapter, we shall assume that Lh VO links conlain che
addresses of the stand.an.I [/Q ubroutines: COUTI and KEYIN if the 80-column
firmware is disabled, and BASICOUT (also called C3COUT1) and llASICIN iJ t.he
RO-rnlumn firmware L~ enabled

70 Chapter 4: Video Firmware

Standard input routines
The .i\pple IIGS firmware includes three different. ubroulines for reading from lhe
ke~·boan.l. These subroutlncs .re wrinen to funcLion at different. levels. The character
fnput subroutine KEYIN (or BASICIN wh n lhe 80-column firmware is aclive) accepts
Olle character al a lime from the keyboard TIP RDKEY subroutine (short for
~dke;~ calls KEYIN or B.ASTCIN and handles the onscreen cursor. The third
SJ.JbrnuLine is named GETI.N, which tands for gel ll'ne. By making repeated calls to
RDKEY, GETI.N accepts a sequence of characters terminated with a carriage return.
GETl.N also provides on creen editing fearures.

RDKEY Input subroutine
Your program gets a character from !:he keyboarc1 by making a subroutlnc call to
ltDKEY at memory loc..ation $FDOC. RDKEY sets I.he character at Lhe c:u.rsor position
to Oash and then passes control through the inpul link KSW to the current input
~ubroUline, which is normally KEYTN or BASICIN.

iDKEY produces a rursor at the currenl cursor position, immediately to Lhe righ~ of
the dlaracter you lasl ent to Lhe display (normally by using the cot.rr routine) . Th
wrwr displayed by RD KEY is a nashing version of lhc character that happens to be at
llm]Xl5ttion on the screen, Usually, a user lype:s new characters on a blank line, so the
ne1!t character will normally Ix: :a space. Thus, lhe cursor appears as a blinking
rcarngle .

KEVIN and BASICIN Input· subroutines
Apple IIGS supports 40- and BO-column video displays by using input subroutines
KEYi:-; and BASIC! . The KEYlN subroutine is used when the 00-column firmware is
.lnaoivc; B · SICL.'\l is ui;ed when lhc 80-column firmware is active. When called, the
wbroutine wa.il.5 until the ~r presses a key and lhen recums wilh the key code in the
:accumulator_

lf lhc 80-column fi.trnw:ne is inactive, KEVIN displays a cursor by mring a
checkerboard block in the cursor location, then taring, the origina.! character, and
then storing the checkerboard again If lhe 80-column firmware is active, BA.1CIN
displays a steady inverse pace (rectangle) as a cursor. In an additional operating
mode, escape mode, the rursor di.splayed is an inverse video plus sign () . This
lnllicatcs that escape mode is active. See lhe section "Cur:sc)r Control" later in this
chap,cr for more information about the escape mode.

Standard input routines 71

Subroutine KEYIN also generates a random number. While ll is waiting for the user to
press a key, KEYlN repeatedly increments the 16~bit number in memory locations 78
and 79 (hexaded.mal .$4E a.nd $4F). This number continues ta increase from 0 to 65535
and lhen starts over again at 0. The value or chi number ch~nges o rapidly lhat I.here
is no way to predkt whal it will be after a key is pressed A program that reads from the
keyboard can use lhis value as a random number or as a seed for a random-number
generator.

When the user presses a key, KEY1N acceplS lhe character, stops displaying the cursor,
and returns lo lhe calLing program wllh the character in r.he accumulamr.

Escape codes

Subroutine KEYIN ha" sped al functions that you invoke by typing escape codes at Lhe
keyboard, An escape code is obtained by pressing the Esc (Escape) key, releasing it,
and then pressing anolher key. The key sequences shown are nOl case sensttive. That
is, Esc followed by A (uppercase) is equivalent to Esc followed by a (lowercase).

Escape codes are used lo dear the currem line, the rest of the screen, or the whole
screen; lo swjtch from -10-column lo 80-colurnn mode and vice versa, and lo move the
cursor on the screen. The escape codes thal KEYIN follows are Jisted in. Table 4-1.

Cursor control

The Apple UGS is equipped with four <irrow keys. However, these key do not perform
cursor-movemenl functions unless I.he ~ysLem is specilkally lo!d lo give them such
functions. The Apple IlGS firmware provides what is called the escape mode, which
activates the arrow keys for cursor move-s. One of eight possible escape sequ nces can
be used Lo activate the escape mode. As Table 4-1 shows, you can enter e~cape mode
by pres.sing Esc followed by an a1phabelic key or by pressing Esc followed by one of the
fou.r arrow keys. Recall also t.hal when lhc 80-column firmware i.s active, the cursor
display changes lO a plus sign (+) when I.he syslern is operating in escape mod .

You can continue lo use the arrow keys to rnov,e around on the screen.. As nored in the
cable, escape mode l.Ciminate.s when anything other than an ;mow key is pressed.

72 Chapter 4: Video FJrmwore

Tabre 4· 1
Escape codes ooo thatr functtons

&c:~ code

Curm r conho'I
Esc A

Esc B

E.scC

E.scD

Cur1ar contro l/
tnterfng escape mode
Esc I
(or E.sc Up Arrow)

f:s<: J
(or f.sc Le~ Arrow)

F.$c K
{or E.sc Rig,ht Arro-;..,.)

E'.sc:M
{or Esc Down Arrow)

Scr&en/llne c recrlng
~c@

Esc E

Screen formo1 control
f.s(lj

F..sc 8

P.sc-Contrn1-D

f.sc-Control-E

Esc-Comrol-Q

Fuinctlon

M oves rnrsor right. one space; exits from escape mode

Moves cursor left one space; exits from escape mo<lc

Moves cursor down one line; exits from escape mode

Moves cursor up one line; exits from escape mode

Moves cursor up one line a nd remains in escape mode

Moves rur:sor lef1 one pace lnd remains in escape mode

Moves cursor right one space and remains in escape mode

Moves cursor down one line and remains in escape mode

Clears window and moves cursor to its home posicion
(uppcr-lcfL corner of screen); exits from escape mode

Clears to end of line; exits from escape mode

Clea.rs lo be.mum of w1ndow; exits from escape mode

Switche1; rrom 80-column display to 40-column dispJay if
SO-column firmwar is active, sets li nks lo B SICIN and
BASlCOUT, restores normal window size; exits from escape
mode

Swilc:h s from 40.-oolumn display ~a 80-colum.n display by
enabling 80-calumn Hrm-.;vare, seis .link to BASlCJN and
BASICOUT, restores normal window size, exits from escape
mode

Di able conuol characters; only carriage returns, Linc
feeds, bells, and backspaces have ffects when printing is
performed

Re activates control characters

If 80-column firmware i.'i active, deactivates 80-column
firmwa re, SClS links lo KEYIN and COUTI , restores normal
windov.t size, exits from escape mode

Standard rnput routines 73

GETLN input sub.routine
Programs often need strings of characters as inpuL. Although you can caU RDKEY
repeatedly to gel several characters from the keyboard, there is a more powerful
subroutine you can use to gel an ed[ted line of characters. This routine is n-amed
GE71N, which stands for get line; GETIN tarts at Tocati.on SFD6A. Using repeated calls
to RDKEY, GETIN accepts characters from the standard i.npul ubroutine-usuaHy
KEYIN-and puts them Into the input buffer located in Lhe memory page from $200 to
$2fF. GETI..N also provjdes lhe user with onscreen editing and control features. lhese
are described in the nexc section, "Editing With GETI...N . ~

GETL:'.'l" display: a prompting character, called prompt. The prompt indicates lo the
user that Lhe program is waiting for inpuc. Differen:L programs use different prompt
characters lo help remind the user which program is requesting Lnput. Por example,
an l:>IPUT statement in a BASIC program displays a question mark(?) as a prompl
The prompt characters used by Apple IlGS programs are shown In Table 4-2.

GETLN u.ses the character stored at location 51 Olexadecimal S33) as the prompt
character. In an assembly-language program, you can change the pmmpt to any
character that you ~dsh. In BASIC or in the Monitor, changing the prompt character
has no effect because both BASlC and the Monitor restore the prompt lo their original
choices each time they request user input

Table 4-2
Prom pt chmacter.'l

Prompt
chcuccter

'?

>

Program requ.aHng Input

User's BASIC program (11'.'PUT statement)
App~e.soft BASIC
Integer BASIC
MonilQr
Mini-assembler

As you type an input character slring1 GETLN ends each cha.ract.cr to the scand.ard
outpul routine, normaUy COUT1, which displays the character al Lhe previous cur or
position and puts 1.he cursor at the n xt available position on the display, usuaUy
immediately to the right of the original po~ition. As the cursor 1ravcls across the
display, it indicates the position where the next character will be displayed

GETI.N stores lhe chantc[er in ilS buffer, s~a.rting at memory location $200 and u.<>ing
the X register lO index the buffer. GETI.N continues to accept a.nd display characters
until you press Return. Then it dears the rem.a.Ind r of lhe line I.he cursor i on, ~ lores
Lhe car.riagc return code in the buffer, ·ends Lhe carriage rcrum code to I.he display,
and returns Lo the calling program.

74 Chapter d: Video Firmware

The maximum line length lhaL GETI.N can handle is 255 character . If the wer types
more lhan 255 characters, GETIN sends '3 backslash (\) and a carriage return to the
display, cancels lhc line it has acceprcd so far, and starts over. To wam lhe user that
I.he line is geuJng full, GElLN ounds a bell (tone) al every keypress after the 2481h.

Edi1iRg w!Jh GETILN

The subroutin,e GETLN provides the t:andard on.screen editing f:'eatures used with
BASIC interpreters and the Monitor. Any program I.hat uses GETI..N for reading the
keyboard offers these features, For an introduction to editing wilh Ghi:LN, refer to lhe
Applesojl Tutorial.

Cancel lne~ Any time you are typing a line, pressing Coni:rol-X causes GET.LN to
cancel lhe line. GETLN displays a bac:ksla h (\)and issues a carriage return and then
displays the prompt and walts for you to type a new line. GETLN auloma.1.ically cancels
the line when you type more than 255 characters, as de.scribed earlier.

Baekspace: When you press the Backspace key, i:he Back rrow key(+--), or the Delete
key, GE'ILl'\l move.~ its buffer pointer back one space, deleting the lase character in its
buITcr. 1L al.so senru a backspace character to th -· rouline COUT, which moves I.he
display posfticm back one space. ff you type anotllcr chara ter now, it will replace the
ch:atacler you backspaced over, both on th display and in t:he Une uffer. Each time
you press th· Backspace key, the cursor movc.i left and delete.s another character until
you reach the beginning of !he line. lf you I.hen press Backspace one more time, you
c:incel the line. If lhe line is canceled I.bis way, GETI..N issues carriage return and
displays lhe procnpt

R:elypa: The function of the Retype key () is complementary lO the function of lhc
Backspace key. When you press Retype, GETL\T picks up lhc character at the display
position just as if it had been typed on I.he keyboard. You can use thi procedure to
pick up characters that you have ju.st dcJeted by backspacing a.cross lhem. You can use
the backspace and retype functions with lhe cursor-motion functions w edit data on
I.he display. For more information about cursor motion, sec the section "Cursor
Control" earlier in this chapter.

Keyboard Input buffering
ln vecsion.s of the Apple ll prjor m the Apple UGS, if a user pressed a key while a
program was processing the previous keysu--oke, charaaer that the user wa typing into
the program were in danger of being lost. The Apple ncs allow you Lo use keyboard
Input buffering to prevcnc the loss or key t.rol<es.

The u.ser can .selecl keyboard input buffering through lhc Conuol Panel program. If the
Evcm Manager is enabled, I.he type-<1head buffer can process an unlimited number of
key pressc .

Standard Input routines 75

Standard output routines
The Mon.ilOr f1.rmware output routine is named COUT(pmnounoed C-aufJ, which
stands for character out. The COUT routine normally calls COUT1 , which sends one
char~ccer ro the display, advances I.he cursor position, and scrolls the display when
neressary. The COUTI routine restrict') its use of lhe display oo an accive area called
t.he texl window, described later jn this chapter.

BASICOlIT is used in.slead of COUTl when lhe SO-column firmware i.s active.
Subroutine BASICOUT Is essenc.ially I.he same as COUT1: BASICOUT displays lhe
character in the accumufator on the display screen al the current cursor posilion and
advances the rursm. When BASICOUT rec11rn.s control LO lhe calling program, au
registers are intacL

COUT ond BASICOUT subroutines
When you call COUT (or BAStCOUT) and send a character to COUT1 1 the chara.cte.r is
displayed ac the rurrenc rurs.or position. replacing whatever was lhere. COUTI then
advances lhe cursor position one space to lhe right If the cursor position is al the right
edge of the window, COUT1 moves the cursor to the leftmost position on 1.he ne:xl line
down. If lhi.s moves the oirsor past the end of the last line ln. the window, COUTl
scrolli the display up one line and sets the rursor position al the left end of the new
bouorn line .

Tile cursor position is controlled by I.he values in memory locatioru 36 and 37
(hexadecimal $24 a.od $25)_ Subroutine COUTl does nol display a cursor, but the
input routines COUTI and C3COUT1, described in the next sect.ion, do display and
use a cursor. If anolher rouline displays a o.usor, that routine will not necessarily put
the character jn the cursor position used by COUTl.

Control chmoctets with COUT1 and C3COUT1

Subroutine COUTI is the enuy poinl lhac is active for characler output in 40-column
mode. Encry point C3COUT1 is active when me system is in SO-column mode .
Subrouli.nes COUfl a.nd C3COUT1 do not di.splay control characters. Instead, the
control characters listed in Tables 4-3 and 4-4 are used lo jnitiate action by the
finnw:.ue. Other oontro1 characters are ignored. Most of the fun ct.ions li,c; ted here can
also be invoked from the keyboard, either by typing I.he control character listed or by
~Q,La.11r...,~ -& .1:V.i.':li 1,...11~ . ._.- CTI.-J li.IV~""1. ~s..ul r v;~ - ~7JJL.J.t:;;\::.i~ - tr;. ... "J1 1l11c1t1;>1 ... 1tU·:u:a.c~~~n....-.!1 ~ur-lJ1 -

using the appropriate escape code, as described in the section "Escape Codes~ earlier
in this chapler.

76 Chapter 4: Video Firmware

Table4·3
Control characters with 80-Column firmware off

Conlrol-G
Control-H
ComroI-J
Control-M
Contro I-A { cha r J

Tabla 4·4

Actilon taken by cOtlflT1

Produces user-defined Lene (Conlrol Panel menu)
Causes backspace
Cause line feed
Causes carriage return
Fi.rst cha.racier oulpul after Control-A becomes new cursor. IF
Delete key i fir t character, default prompt is restored.

Control charac ers with BO-Column firmware on

COnlrol character

Control-E
Concrol-P
Control·G
Conlrol-H
Control-]
Control-K
Contml-L
Control-M
Control-N
Control-a
Cont.rol-Q
Control-R
Control-S
Control-U
Control-V
Control-W
Control-X

Concrol-Y
Control-Z
Control-[

Conlrol-\

Control-1
Con trol­
Conlrol-A

Conl.fol-A {char}

Tums cursor off
Tums cursor on
Produces user-defined tone (C.omrol Panel menu)
Causes ba:ckspace
Causes line feed
Clears from cursor position lo end of screen
C:mses foftli f~d
Causes carriage return
Changes to normal display format
Changes to Inverse display format
Sets 40-column display
Sets 80-column display
Slops listing of characters until another key Ls pressed
Deactivates cnh anced video firmware
Scrolls display down one line, leaving cursor in current position
Scrolls display up one linc:1 l~aving c:ur or in nmem rm:iitign
Disables MouseTcxt character display and use inverse
uppercase characters
Homes cwsor to upper-lefc corner
Clears line on which cursor resides
Enables MouseText character display by mapping inverse
uppercase characters to MouseText characters
Moves cursor position one space to righ[; from edge of window,
moves lO left end of n(:.)..1 !ine
Clears from cursor position to righl end of line
Moves cursor up one line with no scroll
Goes to XY; u ing next two characlers minus 32 as 1-bytc X and Y
va]ues, moves cursor to 0-f=X, CV=Y (Pa.5c:aD
First character ourpuL a..fc:er Conlro1-A becomes new cursor. lf
Delete key is ITm character, dcfaulL prompt is restored. This
works only when using BASlC links, not Pa.seal output links.

S andard output rou Ines 77

Inverse ond fl os'hi ng text

uiJrouclne COUT1 can display text in normal format, inverse format, or wilh some
rest.rictions flashing form.at The display formal for any character in the dispfa}r
depends on lwo factors: the character set currently being used and the setting of the
two h igh-order bits of ~h~ characc.er's byre in I.he display memory.

As it sends your rcxl c.ha~ ters to the display, COUTl sets the high-order bits
acco rding to Lhe value stored at memory location 50 (hcxadccim:il S32). ff thal va.lue is
255 {h •xadecimai $17?), COUT1 sets I.he character display lo normal format. If t.hal
value is 63 (hexadcdmaJ S3F), COUT1 set! the character di play lo inverse formal. If
the va lue is 127 (hexadecimal $7l~') and i.f you have selected the prim ry character ' Ct,
the characters will be di played in nashing format. 'ate that the Hashing format is not
available in the alternate character ct. Table 4-S ho the effect of the mask value on
r:irticular pans of Lhe character sel.

Tabla 4-5
Text format contro l values.

Mask
(dee)

255
l 27
63

SF
$7P
$3

Di5plav format

Normal, uppercase, and lowercase
Flashing, uppercase, and symbols
Inverse, upperca. e. and lowercase

To control the display formal of lhe charac~ers, routine COUTl uses die value at
local.ion 50 as a logical mask ro force t.he Selling of the two high-order bit'> of each
charac1cr byte it puts into lhe dispby page. n docs this by performing a logical AND
operation on Lhe data byte and mask byte. The resulting byte contains a O in any bil
thal vns a 0 in ~he mask . B S1COUT, used when the 80-column firmv.rare is aCLive,
changes only the high-order dala bit

.;., 1 'ote: ff Lhe -column firmware is inactive and you .store a ma k value al 1ocatjon 50
wilh zeros in its low-order bilS, COlITl will mask those biis in your tcxl As a result,
some characce r will be transformed into othe.r characters. You should set the mask
va lues only lo those given in Table 4-5.

lf you sel the mask value ar location 50 lo 2 (hexadecimal $7F), the high-order bit of
each rcsul ling byte will be 0 and the characters will be cm played either as lowercase or
nashing, depending on which character set you selected. In the primary character set,
~lie next-highest bit, bit 6, sc1ecrs nashing formal with uppercase character.;_ With the
prim::uy characler set, you can display]owercase characters in normal format and
u ppercase c:haraclcrs in normal, inverse, and flashing formats. In the allernate
characte r set, b it 6 selects lowercase or pecial characters. With the alr rnat~ charac~ r
set, you can display uppercase and lowercase d1a ractcrs in normal and inverse
fo rmats .

78 Chapter .d : Video Firmware

Other firmware /0 routines
In additlon to I.he read and write charact r mu1Jnes described abovt:, the Apple T1GS
firmware also includes severa1 roulines lhat provide convenienL ."lcreen-oriented 1/ 0
functions. These functions arc listed in Table 4-6 and arc described in detail in
Appencllit C, ·Fi.rmware Entry Pomts in Bank SOO."

lm,p.ol1anr

Appendix C fs tne official list of oil entry po ~that are currently valid and for
ch continued support will be provided In futUfa revisions o1 this product,

Table4·6
Partlal llst of other Monitor firmware 1/0 routines

Location Name Description

F'C9C CLREOL Cleaffi to end of Hne from current o.mor position
$FC9E CLEOLZ Clears to end of line u.sing contents of Y regi! te.r as cursor

pcl'liilion
$FC42 CLREOP Clears to bottom of window
$FS32 CLRSCR Clears low-resoluuon screen
$F836 CLRTOP Clears top 40 lines. of low· resolution screen
SFDED COU'f Calls output routine whose address is stored in CSW

(normally COUTJ)
SFDFO coun Displays characler on screen
$FD8E CROUT Generates carriage return
PDSB CROUT I Cleu to end of line and then generales carriage return
PD6A GETI.N Displays prompt character~ accepts Sll'ing uf characters by

means of RDKEY
$F819 HUNE Draws horizon{al line of blocks
$FC58 HOME Clears window and puts cmsor in uppcr-Jert corner of

window
FDlB KEYfN With 80-column firmware inactive, di plays checkerboard

cursori accepi:.s characcers from keyboard
$f800 PL01 PlolS single low-resolution block on screen
$F94A PRBI.2 Sends l to 256 blank spaces Lo output de\ice
$FDDA PRBYTE Prims hexadecimal by1e
SF'DE3 PRHEX Prints 4 bits as hexadecimal number
F941 PRNTAX Prints comenl.S of A and X in hexadecimal formal

SFDOC RD KEY Displays blink.Ing cursor; goes to standard input routine
(normally KEVIN or BASICIN)

F871 SCRN Reads color of low-resolution block
$F864 SETCOL Sctc; color for plotting in low-resolution block
$FC24 VTABZ Sets cursor vertical posicion
SF82B VLINE Draws verlica1 line of low-resolution blocks

Other firmware 1/0 routines 79

he text window
After tarting the computer or afrer a reset operation, lhc fumware use.5 lhe entire
dispJay for text However, you can resuict texc vid o activity many rectangular
portion of the display that you w~ b. The active portion of the di play is called the text
window. COUTl (or BASICOUI') puts charaaers Lnlo the windo only; when it
reaches me end of the last line in the window,]t scrot~ only the conlenlS of lhe
window.

You can conuol the amounc of the screen I.hat lhe vid o nnnware reserves for lext by
modifying memory di.reedy. You can :sel lhe lop, bottom, left side, and width of Lhe
tex:t window by loring lhe appropriate valu in four localions in memory. TI1!s allows
your programs to control the placement of ~ext in I.he dispby and to protect other
portions of Llle sC11een from be.ing overwritten by new text.

Memory]ocat.ion 32 (hexadecimal S20) contains the number of I.he leftmost column
in chc text window. This number norm.ally is 0, the number of the lefllnost column of
I.he display. In a 40-column display, the maximum value for I.his number is 39
(hc:x:adecimal $27); in an 80~column di.splay, the maxi.mum value i 79 (hexadccimaJ
$4F).

Memoryr location 33 (hexadecimal $21) holds the width of the text window. For a 40-
column display, Lhe wjdth :normally is 40 (hexadedmal 528); for an BO-column
display, .it normally is 80 (hexadecimal $SO).

Memory location 34 (hexadecimal $22) coma.ins the number of I.he top line of I.he texl
v.rindow. This normally is 0, the copmo l line in lhe display. IIS ma imum value is 23
Chcxadecim l S.17) .

Memory location 35 (hexadecimal $23) contains the number of the bottom line or ili
creen. Iis normal value is 24 (hexadecimal]8), the bouom line of the display. Its

minimum value is 1.

Af[C:j" you have changed the text window boundaries, the ap pearancc of Lhe screen will
not change until you send lhe next character to lhe screen.

80 Chapter 4: Video Firmware

Ch

Serial-Port
Firmware

81

This chapter cove I.he features of 1he serial communications firmware . The
Apple HGS serial-port firmware provide ·eri111 communications for external devices,
uch a - printers nd modems. The Apple IlGS serial-port firmware use a two-channel

Zilog Seria.J Cocn.mun.icalions Controller chip (SCC8530) and RS-422 drivers . The
driver firmware emulates r.he functionality of lhe Apple Super Serfal Card (SSC) and
supporL'i input/output buffering as well as background printing. The fmnw::ue al'>o
jmplements a number of calls thai I.he applical.ion can make to control the new
features .

lnpuc/ ou(pul buffering and background printing arc done on an interrupt basis and
can use any buffer ize up to 64K at any location that the application wishes. VO
buffering is transparent for BASIC and Pa,c cal . An application can make a function call
tha.L 'tarts background printing. lhe function caH copies lhe data into the background
printing buffer ancl th n returns conLrol m lhe applic.Won. Data i · fed to the prin1er
automatically until the end.re coniencs of the buffer have been sent Lo the print.er.

Note that ppleTalk, wh n adlve, requires I.he use of one of the two available. erial
channels. Therefore, only l.Vlfo of these Lhree- AppleTalk, serial port 1, and serial
port 2-are allow d [D he active at any one lime. The Conrrol Panel program ensures
1.ha.t at least one serial port ls made i.nacr.ive wh •n Apple Talk has been selected You
can't inlli.aHz.c the .serial-port firmware when the channel i.s being used by ppleTalk.
Born pon 1 and port 2 can be configured as ell.her printer or communications
(modem) ports.

You can set default parameters for the serial ports through l:hc Control Panel firmware.
The application progr3m can temporarily ch.at1ge the parameter values by sending
control sequences to the serial-port firmware.

Compatibility
The commands used Lo communicate with the serial-port. firmware are essentially the
sam as those used with lhe SSC. However, many existing programs using these ports
are not compatible wiLh lhe · pple HGS. Many programs, particularly
communications package , se11d their output directly to the hardware; lhe Apple ITGS
ha.rdW3re no longer uses hardware differenL from lhal used on the SSC. Print programs
and application wriuen in BASIC and Pascal are more likely to work.

One other d.ift:erence between the Apple ITGS serial-port firmware and other se.nal­
port firmware is in error handling. 1n the SSC, as weJl as in the Apple Uc firmware,
when a charact:er with an error is received, the character in error is not deleted from
the inpm sl!eam. The Apple IIGS firmwa.re does delele Lhe characcer from !he input
, rream and sets a bit to record the fact lhal an error wa encountered.

82 Chaptar 5: Serial-Port Firmware

Operating modes
The erial-port firmware has three main operating modes: primer mode,
communications mode, and terminal mode. You sel these modes through the
Control Panel. An application program can change these modes by sending
command sequences to the serial porl.

1) 'ote: If you are writing software thal depends on I.he serial-port firmware being in a
given operating mode, make sure that your documentation tells the user lo sel up
the firmware u ing the Control Panel in lhe proper way.

Printer mode
When in printer mode, lhe serial-port firmware can send data to a printer, a local
t.errnlnal, or some other serial device.

Communications mode
When in communications mode, che firmware can operate with a modem. From
BASIC, while the serial firmware is set for communications mode, the Hrrnware can
enter a spcdaJ mod·, called terminal mode, in which che Apple l.1GS acts like an
unintclligcm terminal

Terminal mode
Jn terminal mode, Lhe Apple rTGS acts like an unintelligent cerminal. AJI the characcer
typed are pas d to Ltte serial output (except the command string.~). and aU serial input
goes directly lo the screen.

You enter terminal mode from the BASIC interface by typing I Nfn and lhen typing
the currenl command cmracter followed by a T. The prompt characcer changes to a
flashing underline (_), indicating lb.at terminal mode is active. You exil termlnaJ
mode by typing the current command character followed by a Q.

You a m use terminal mode with buffering enabled. This minimizes character los · at
higher baud ral.CS. Ena.blu buffering wllh lhe: Bufreting Enable (BE) serial command,
described below.

Many remote computers send a line feed (LF) after a carriage return (Cn). When using
terminal mode with such a compucer, u the Masking Enable (ME) serial concrol
command Lo mask any line feeds that immediately follow carriage returns.

Opera Ing modes 83

Handshaking
Commu nicacions-equipment manufacturers have devised a variety of handshaking
schemes. Apple IlGS accommodates lhese various schemes by pmviding sever~?
hardware and software handshaking options.

Hardware, DTR and DSR
When me DTR/DSR option is active, lhe daca. terminal ready (DTR) and data set ready
CDS£() lines control the data flaw into and out of the system. Tue Apple IIGS transmits
characters only when the DSR line is enabled; lhc DTR line cells the device when the
hosL is ready lo accept data. The default Control Panel setting enables ha.rdwar
handshaking. If chis option is dis.abled, the DSR line is not checked on ransmissjon
and the DTR line ·will not be toggled during reception (see Figures 5·1 and 5-2). The
targcl device's firmware determines whether these tin s mean anything during data
transfer.

The data carrier detect (DCD) line controls modem c:ommunicaiLioos, If you enable
lhe DCD handshake option, the Apple UGS serial-port firmware will l:J'a..nsmil
characters onJy when lhe DCD Une is enabled The DCD oplion ha.s no direct effect
on character reception. This mode provides compatibility with the SSC, which. uses
DCD a a handshake line.

I

TX rx -- 1 DSR ...
Apple llGS

...
Modem Re ote - RJo: comp er-. Rx

Drn -- -- I -
I

FlglU'e 5-1
Handshaking when DTR/DSR option Is turned on

84 Chop er 5: Serial-Port Firmware

Tx
Apple llGS Rarnot0

compu er -- DSR ...

Figura 5-2
Handshaking when DID/DSR option Is urned off

Software, XON and XOFF
If an XOFF ($13) character is reoeived rrom ill device attached to lhe SCC, the firmwa..re
halts character transmission until an ON ($ ll) chanicter is received_ This option
works in addition to the hardware handshake. In printer mode, Lile firmware di.~ablc.s
this function.

Tl
-""" ..

Acple llGS Remo e
computer -- Rx -

Rgm954 3
Haooshaklng via XON/XOFF

Handshoklng 85

Oper,ating commands
Apple IlGS control commands, embedded in the serial output flow, are invoked by
BAS JC or Pascal output routines. for each of ch~ openHing modes (printer or
corrununlcatlon), you can control many aspects of your data transmissions, such as
baud rate, data format, and line-feed ge n ra!.ion, by sending control codes as
commands LO the firmware. All commands are preceded by a command characcer
and optionally followed by a return character ($OD). The carriage return is allowed to
majnlain compatibility with the C. The format of the commands is as follows:

[command-chtlract r) { comrn.and-srn·ns} Hetum

Tirn command character usually is Control-I in pri.ntcr mode and Conu-ol-A in
communications and terminal mode . [n lhe examples in the following texl,
Cont.ro?-J is used unless lhe command being described i available only In
communkation.s mode or terminal mode. rerurn character is reprcscmcd by it.s
Asen symbol, CR.

There are three types of command formats :

Cl a number, represenred by n, follo'?led by an uppercase leuer 'IN.ilh no space between
1.hc c.ha..raccers {fo r example, '10 lo set data format 4)

D an upperca. e leuer by itself (for example, R lo res t I.he e.rfal-port firmware)

o an uppercase letter follow d by either a space or no space and then either E lo
enable or D to disable a feature (for example, LO to disable aumrm.tic insertion
of line-feed characters)

The allowable range or n is given in each command de cription that follows .

O:• Note: All options, such as baud rate, parity, and llne length, can be configured
from the Control Panel (see Chapter 10, ~Mouse Firmware") .

Serial~porr firmware must be reinltiaU2ed afler changing options from che Con~rol
Panel for the new values to take effect

86 Chapter 5: Serial-Port Firmware

The command character
The normal. command character is ControI-1 (ASCII 09) in printer mode and
C:ont.rol-A (ASCII $00 in communications mode. If you want to change the command
t:haractcr from Control-I to another command character (for example, Control-W),
send ControlrW to Control-I. To change back, send ControlaJ to Control-\V. No
lfl.Ym GIJariC~f ii'l F~QYLl'C.Q ii.fr.Cr idler of llJe!ie com.ma.ruts.

+ l\lote: The SSC allows you t.o send the current command cha.ract.e.r throug_h I.he
output stream by sending the character t:wicc in a row. The Apple llGS does not
allow this; the character will not be output To send the command character
through the serial port, you must temporarily change to an allcmatc command
character. For example, if the currenl command character is Control-I and you
want to send a Control-I oul the serial port., then send

ControJ.1 Control- Control-I Control-A Control-I

11-.e first tv.io character change the command character lo a Comrol-A. The third
character is I.he Control-I you wanted lO send. The fourth and fifth characters
restore the command character to Control~I again_ Remember, though, lhat you
can disable all comm.and-character par.sing by using the Zap command.

To generau;: this command character in Applesoft. BASlC, enter

PR 1 r\T CH R$ i 9) ; " command-siring"

For Pascal, e.nter

lill:n:U·l (CRRj 9), • c.omm(:lnd-smng• J;

'fbc following example hows how to generate l:he command from a BASIC program;

10 DS "'CRRS(O:
lD AS CHRS!gl;
l~ P!l.INT D.S; "l?R 1":
~·~ ?RL 1' AS; "6B'':
50 ..

Command strings

RE.M Senos control -D
REM S nda control-I
ru::M Establishe~ link ; BASIC Lo per~ l
REM Change~ ~o 300 naud
REK Continue p~oqra~

A command string is a le[ter sometimes with a number prefix and sometimes wjlh an .E
or a D suffix. Command suings select the option Lo be used; for instance, they may
dJange Ille baud rate, seJecl !:.he dat.a formal, and set the par[ty. The preceding
example shows commands generated In BASIC; Lhe command strings in Lhe following
sections are generated from the keyboa.1d.

Opera rng commands 87

Commands usefu, in printer ond communi·cations modes
The following commands are mosl useful in printer and communications modes.

Baud rateJ n B

You can use lhe nB command to .sck:ct ch baud rate for the serial·port firmware. For
x:ample, to change lhe baud rate to 135, send Control-I 4B CR lo the serial-port

fi.rmwa.re (sec Table S-1).

il'abr 5-1
Baud-:rate se rae11oru.

n Baud rah! n Baud rate

0 Default• 8]n)

l 5l) 9 UDJ
2 75 .10 UiOO
:3 no 11 36CO
4 134.5 12 4!:00·
5 150 13 TIJX)

6 300 14 ~
7 6oo 15 19,200

• You set lhe defaul l by us[ng lhc Control
Panel.

Dota format, nD

You can override the Control Panel setting lhat specifies the data format by using th
nD command. Table 5-2 shows how many data bits and Slop bits correspond to each
vaJue of n . For example, Comrnl-1 2D makes lhc serial-port firmware 1.ransmil each
chara:cu:r iri lhe form of 1 srut bh (always transmitted), 6 data bi~, and l stop bic.

Tabre 5-2
Data-format selectlons

n

0
l
2
3
4
5
6
7

De.fa
bHS

8
7
6
5
8
7
6
5

Stop
bits

l
1
1
1
2
2
2
2

8B Chapter 5: Serlo!-Port Flrrmvore

Parity, nP

l"ou can use lhe nP command to set the parity lhal you want to use for data
transmission and reception. Pour parity options a.re available. These are listed in
Table 5-3.

fab,a $-3
Por1ty selections

n Porifv value

0 None (default value)
1 Odd
2 Nnne
3 Even

+ Note: The SCC 8530 does nm support MARK and SPACE padty.

Une length. nN

The line lengl:h is set by sending Control-l nN. The number n can be [n the range of 1
to 255 charaaers. For example, if you send Conuol-l 75N, the line length Is set. to 75
cha.ractcrs. (Nole Vse !.he C command, discmsed next, to enable Un.e formatting.) If
you set n to 0, formalting is dis.a.bled

Emable line formatting, CE and CD

A forced carriage return js invoked after a iineful or characters by sending Controi·I
CE- For example, Cont.rol· I 75N (see "Line Lcngch'' above) and Conttol-1 CE cause a
forced carriage return after 75 characters are typed on a Line_

Handshaking protocol, XE and XO

Sending Control-I XE CR or Control-I XD CR to the serial-pan firmware de~ermines
whether I.he firmware looks for any XOFF ($13) character cuming from a device
attached to the sec_ Tl responds by halting 11ansmission of characters until the seriaJ­
port flrmw;;ire receives an XON ($1 n character from the device, signaling che sec LO
continue transmission. ln printer mode, lhis function norma.11)• is disabled.

XE = Detect XOFF .. awall XOK
XD = Ignore XOFF.

Operoting1 commarx:ls 89

Keyboard inpul, FE o.nd FD

The FD command is used ca make the serial-part firmware jgnore keyboard input. For
example, you can include Control-I FD CR in a. program, followed by a .routine chat
retrjeves data through the serial-pcm firmware, followed by Control-I FE CR to tum the
keyboard back on. As a default, lhc serial-port fLrmv.rare keyboard input rs enabled.

FE - Insert keystrokes into s.erial-pon firmware input 5lrc~m.
FD = Disable keyboard input.

Automatic line feed, LE ancl LD

The automatic line-feed command causes the serial-port firmware to generate :md
transmit a line-feed character after each return char.u::ter. For example, Control-I LE
CR to prim lislings or double-spaced lext.

LE - Add Hne reeds after each carrlage return output.
LO ~ Do not :add lira= feeds after carriage return output.

Resel the se,rfcd-pod firmware, R:

"!lie R command resets t.he serial-port firmware, cancels all previous commands lo l'.he
se.rial-porr firmware ;:i.nd re.inslalls tbe ComroJ Panel default sel1mg.<l. Sending
Control-IR CR w the serial-port firmware has I.he .same effe<::l a~ Sl':nding PR#O and N"O
lo a BASIC program and then resetting the serial-port firmware. Tuts calJ also
relinquishes any memory obtained from the Memory Manager for buffering purposes.

Sup:press contror characters. z
The Z command ca use:; all further commands to be ignored 'This command i.., u~ful

when l:he data you are transmitting (for ins Lane~. graphics data) contains bit patterns
Lhal lhe serial-port firmware could mistake for control characters.

Sending Conlro1-l Z CR lO I.he serial-port firmware prevents lhe firmware from
recognizing any further conl.rol characters, whet.her rmm 1.he keyboard or com:ained
in a stream of characters .sent to the scrialTport firmware. All tabbing and Une
formalLing are disabled after a Control-I Z command

Important

The only woy to reinstate command recogrlltlon oner the Z command Is either to
Initialize tt1e serta l-port firmware or to use the SetModeBlts call described later In
this chapter.

90 Chapter 5: Serlal-Port Firmware

Commands useful 1in communications mode
The following commands are most useful in communkations mode.

Echo characters fo, the screen, EE and ED

'!he EE and ED mmmands are used to display (ed10) o r not to di play a d1ar Cler on
!:he video creen du.ring communication. or exampJe, if you send Con1.ro]rA ED CR,
the serial-port firmware disabl lhe forwarding of incoming charact.ers lo Lhe screen.
This oommand can be used to hide a password entered at a rerminal or w avoid the
double di play of characters.

F:E • &:ho input.
ED• Don't echo ioput.

Mask line f,eecr in, ME an.d MD

If you send Control-A ME lo the seria]rport fmnware, the firmware will ignore any
incoming Linc-feed character that immediately foUows a renim character.

Input l:>uflering, BE ·an.d BO

The BE and BD commands contml input and output communication buffering.

Teimlna1 mode, T and Q·

The T command lransfers you lO icrmi.na.l mode. Jn this mode, you can communic:ate
wilh another computer or a computer lime-sharing service . Terminal mode is encered
through lhe BASIC interface. This means Lhat you musL initialize the firmware by
typing TN#n and then sending Control-AT.

t Note: lN#n sets the pan input link, and PR#n sets the port output link. 'The
lowercase n indicates the port number.

To quit terminal mode, end Control-AQ.

O~en, when communic:ali.ng wiili another computer in terminal mode, you want w
send a break character to signal the olher computer that you wish to signal the end of
tJJe currenl segment of tr-ansmission. To send a break character, send Control-AS CR.
This command causes the serial hardware to transmit a 233-millisecond break sfgnal,
recogni2ed by most lime-sharing sy terns as a sign-off sjgnal.

Operating commands 91

Table 5-4 summarizes terminal ~mode command characcers.

Important

1 · you enter terminal mode and con' see what you type echoed on tt"le video
screen. ha modem llnk may no yet be establlsMed or you may need' to use the
Echo Enable command (Con rol-A EE).

Table 5-4
i ermlnal-moda com mend cha rocters

Cha r·aehH

s
T
Q

Transmits 233-millisecond break Call zeros)
Emers terminal mode
Exits terminal mode

Tab in BASIC. A:E and AD

Tf you send Control-I AE CR to the sc1fal-port finnware, the BASIC horf7.onral pos[tion
counter is left equ.a1 lO the column count. Tabbing inillally is disabled. It is up to m
program to en.able tll1s feature if tabbing i.s desired.

A E - Implement BASIC tabs.
AD= Do not implement BASlC tabs,

11m serial-pon firmware provides two interfaces: one for BASIC and one that adheres
to the Pase.al 1.1 firmware protocol.

•:O Note: To use the serial-port firmware, you muse set the 65816 dala bank register to
$00, shifL to emulation mode (e bit sel lo 1), and lhen issue your caU. All entry
points are in the $Ca00 space in bank $00. CThts applies to all calls lo serial-port
firmware.)

92 Chapter 5: Serial-Port Firmware

BASIC interface
The following entry points accommodate the BASIC interface (n fa, Lhe :;lo~ number,
·which can be 1 or 2}

· C'.nOO BASIC inillallzation (also outputs character In lhe accumulator)
' SCilOS BASlC read chan1c1c:r (ch:a.raae:r returned to .ccumulatnr: X. Y preserved)
· ~07 BASIC write cha raCler (character passed th rough ~cC\!!:mUlalor; X, Y preserved)

.Although the call lo $CNOO coincidentally outputs the character in the accumulator,
you should not use lhis 5ide effect as Lhe standard means of character output. Ralher,
you should use the $GN07 entry poim for output of all bul the fim character (that ts,
ln.Iliali:ze lhe serial port only once).

When you Lypc INfn or PR.Jn (set inpul or oulpul link), BASIC makes a call to
· $Cn-OO after it sel.5 either lhe KSWL or CSWT. link lO $CnQO. When the :serial-port
Bnnwa.re has control, it alte:rs the links so that !:hey point to the f.tmlware Uead and
Write rau tines.

Pascal protoco1 for assembly language

lfyou ;ue a. macltine-la.nguage programmer, you should use lhe Pascal 1.1 prmocol to
communicate with lhe serial-port firmware. The Pasca1 l . l prot.ocol interface is more
flexible than the BASIC protocol. The Pascal 1.1 prmocoi uses a branch table in lhe
5Cn0U page LO indicate where each of the service routlncs bcgjn.s. (sec Table S-5).

For example, to reach the Read routine, read the value contained in loci.lion $Cn0E
(suppose it is S18) and then execute a JSR instruction to the address (for example,
Sen 18). Table 5-6 liscs the 1/0 routine offsets and registers.

+ !fote; The PascaJ interface assumes thac the application supplies a line feed afLer a
rarrfage return, overriding the Control Panel selling. If lhe appJication does not
supply line feeds, it should send the LE (ljnc-fced general.ion) call de!>cribcd in the
5ef;t.ion ~command Strings• earlier in this chapter.

Tobie S-5
Service rouflne descrlpt1ons and address offsets

R-0ulin& na m e

Initialtlati on
Read
Wri1e
Status
Controi

Address
onnt

.$CnOD
:$Cn0E
SCnOF
SCnlO
SCnl2

Descrtptlc n

Resel port, restore Control l>anel defaull.5
Wai1 for and get nexl character
Send character
[nqulre rf character has been received
Acces extended interface commands

Progrcrnmlng with serlalrport firmware 93

'liable S-6,
1/0 routine offsets and registe rs for Pascal 1 .1

Addres:1
o ffset

SCnOD

SCnOE

$CnOF

SCnlO

E.xlended
lnterface t

When used

Initia lization
On entry
OncxiL

H.ead
On entry
On exit

Write
On entry
On exit

Status
On entry
On exj t

SCnl2 Control
Onemry
On f!J':il

X reglsfer

sen
rror code

$Cn
Error code

$Cn
Error code

sen
Error code

Command list
address (8 .. 15)
Undefined

firmware protocol

V register

SnO
Undefined

SnO
Undefined

SnO
Undefined

SnO
Undefined

Command list
address (16 .. 23)
Undefined

A regl sler

Undefined

Character read

Character lO write
Undefined

Rcquesl (0 or 1)•

Undefined

Command list
address (0 .. 7)

Undefined

• Requesl code 0 means Are you ready lo acctJpt ou tput? Request code 1 mean5 Do you

ntlt:e mpul mrmy . .- Un cKll, lbe reply lo the status request is in lhc carry bat, ~s follows:
Carry - O mean l'I~ Carry 1 mea115 yes.

t If the funclion c:;ill returns Wilh the carry biL set, 2-ll error is returned In. Lhe accumulator. The
status ca ll can return a "bad request code" ($40). Result codes returned by the extended
interface are as follows:

Error type

No error
Bad call Error
Bad parameter count

E:tplana11on £nor code

No problem dett."Cllcd. S 0000
lllegal command used. SOOO 1
Parameter count not conslstcol with command requested. S0002

94 Chapter 5: Serial· Port flrmwara

Error handHng
When the serial-port firmware receiv.es a character from the hardware, it checks the
error StaUlS register i.n the SCC. Jf the character has a framfilg Oil' parity error (as.rum.Ing
that the parity option is not set to None), the character is deleted from !.he input
:sri:ttm and che appropriale bit-mode bit is set You can use the GetModeBits call Lo
teid these two bits (one for framing errors and lhe other for parity errors) to
deteITTiine whether at least one receive error bas occurred. After you read lhese bjts,
you should dear them {using SetModeBits) so lhat funuc error'. can be dei.ected Error

: checks should be performed periodically so that you will know whether received data is
1ccuraLe.

Buffering
~p.tt and outpuc cammunkations and background priming c:an be transparently
buffered. Each port has two buffers: on for input and one for output Default buffers
·ll'f 20~8 characters each. If you v.ish to use a buffer larger than I.his, you must pass the
Jdd.ress and length LO the firmware by way of Lhe extended-interface instruction
SetinBuffer or SetOutBuffer. You can allocate up [0 64K bytes.

t .lli'ote.· In systems with liule RAM remaining, you can reduce the size of rhe VO
buffers to 128 byt.es.

You can enable buffering by using Lhe PRAn command from BASIC if the buffering

option has been ~t in lhe ControJ Panel If the buffering option has no~ been se t, you
wi stil! enable buffering from the keyboard or by sending the BE command through
the output flow. When buffering is enab1ed for output, cha.rai:.wrs :ienL Lo I.he firmware
are placed In a FIFO (first in., firs t ouO queue in lhe output buffer. 11"Lesc characters are
;i:enl ou t on an interrupt basis whenever lhe hardware is ready lo send another
character,

'The XON and XOFF characters are not queuedi lhey arc scnl directly through the
tru.Jlnc! so that lhe da.la flow to the Apple JIGS may be stopped or restarted
immediately. Charac:ters received in the buffering mode are placed in the input
~cue, and all read calls return characters from lhc queue. Any XON and X:OFF
diarac:lers received are not queued., so the output flow can be halted or resumed
immediate! y upon re ceplion.

When lhe inpul queue be.comes more than three-fourths fuU, the firm ware anempts w
disable lh~ handshake. The firmwa.re sends an XOFF charact.er (if XON/XOFF
ham!shaking is enabled), or I.he DTR Line is disabled (if DSR/DTR handshaking is
i:nabled). You can deter.mine, lhrough your application program, thaL lhe handshake
h:a.s been di abled by inspecting the input flow mode bit using the GetMooeBics call in
the extended intcrfa.oc. The firmware cee.nable.s the handshake as soon as lhe receive
queue fills less than one-founh of the input buffer.

Buffering 95

You can determine the numhcr nf rh ra rs fn thP mput queue m 1he amount of pace
kfL in the output queue by u..'iing the rnQ t..ltus and 01.ltQ tatus commands in lhe
extended interface. Also, the !nQ .. tatu." nil returns the amount of time lapsed since
the last character was queued '!llis allows a pmgram to keep track of lhe input stream
activity level even though lt is nOl invotved in lhc inie-rru pt procc s.

+) Note. The InQSt.alus elapsed time counter functions correctly only ff the hcanheat
interrupt task has been started Th<' hr~artbeat m.tcrrupt l<!sk 1s a set of fimctions
cal1ed by interrupt code tha1 run automatically al one-thirl.ieth or a second
intervals .

Interrupt notification
When a channel has huffering cnabler1, the fim1ware ervices all interrupts Lhat occur
on that channel. If an application wishes tr> service inrcrnipts for a given channel
itself, it should disable buffering u.o;mg rhe RD command in the output flow. If che
buffering mode i.5 off, lhe serial-port firmware will not process any Interrupts. The
system interrupt handler will [!3.nsfer oJntrol to the user's interrupt vector a.o; S03FE in
bank $00. (This is the ProDOS user's incemipt vector.) The user's interrupt service
handler is then completely responsible for all or;erial-porc firmware interrupt service.

If the appl icalion doc no W3nt to dii;;ahle buffenng, hut doe wish to be notiji'edwhen
a certain type of serial inlerrupl oca.ir.;, ft can instrutl the firmware to pass control lo

an application-ino,;taUed routine after the system has serviced the interrupt. lnc
application Lelis lhe firmware when it wishes to be notified and establishes the address
of Lhc application's completion routine by using the Sctlnllnfo routine. (See
Chapter 8, "Jmerrupt-Handler Firmw'lrc," for more Information about interrupt
routines.) This call guaran[ees that the completion ro11tine will gel control when a
specific type of interrupt occurs, but only after lhe serial-port finnware has processed
and cleared the interrupt. The application then uses the Getlnltnfo routine to
determine which interrupt rnndition occurred.

A terminal emulator offers a typtrll example of when interrupt notification might be
desirable. The emulator usually ·hould perform input and outpuc character buffering,
handshaking, and other such opera11ons The terminal emulator can be designed to
allow the firmware to handle aJJ chara('ter-buffering details. The designer of the
emulator can have the nrmware signal the emulator program when the firmware
receives a break character. To enabte this spedal-condition nolification, the emulator
application sets the break interrupt enable function by using the SetlnUnfo routine.
Now whenever I.he fumwa.re receives at break charac er, Lhc firrmvare SCC inlerrupt
handler records and clears lhe interrupt, finally passing control to the cmularor's
completion routine. This routine C3lls GcUntinfo, and if the break bit is set, the
completion routine knows that a break character has been received.

96 Chapter 5: Serlol-Port Firmware

Note that -all intcrrupl .sources (except receive and lra.nsmit) cause an interrupt on a
mmsmon ln a given signal. This means lhal a user's imerrupl handler will get conlrol
passed lo il on both positive and negacive transitions in the signals of inlercst. For
wmple, a break-character equcnre causes two ini:errupts; one at lhe beginning of
the sequence and one at lhe ,end. The use.r's interrupL handler should take ihis !.ntn
ao::ount- A routine can always determine the current state o.f lh bils of interest by
uaing lhe GetPortStat routine.

1bc rruerrupt completion routine executes as part of the firmware tnterrupt hmu/Je'I'
ind must run in I.hat environment. rn addition, Lhe following environment va.r]able.o;
must be pi;ese.rved by your routine:

DBR • $00, e o, m "' 1, x ~ 1

Rtgisrers A, X, and Y need not be preserved.

Background printing
Apple UGS allows you lo print while ru.nn.ing an application program. Printing while
another program is running is ca.11ed background printllng. Background printing is
analher example of ou puc buffering, as described in th· section on buffering: Jn
background priming, you send a block of characters over a .serial channel on an
lnterru pt b.a.sis. The major difference i • chat the firrnvvare is handed a large number or
i::haracters to transmit all al once ralhcr ma.n getting them one at a tirnc.

to print in I.he background, perform lhe folJowing steps:

L !Mue an lnit call through the Pascal rmerface. Th.ts ensw-es Thal Lhe firmware and
ha rd ware ate active. The hardware dn.racle.ri.slics {baud ra Le, da la forma~. a nd so
on) will be as sped fied in I.he Control Panel.

l . Dis.able buffering using lhe BD seJfal command in case the Cnntrol Panel was set 1.f)

enab1e buffering.

3. If you want to change lhe port characteristics, specify lh~m using either lhe
Set.ModeBits call or the Send command in lhe output flow.

I. Set the output buffer using SetOutBuITcr. To use lhc default buffer, make a call lo

GetOutBuITer co 3scertain its location.

5. Load the data into the buffer.

6. Start lhe printing process with Sen<lQueue, pa.o;sing the lengllt of the buffer data and
the address of Lhe Recharge routine.

Background prin Ing 97

Recharge routine
Once you start background printing with a SendQueue caU, Ille firmware sends I.he
cha.meters periodically, jn I.he background, until the buffer is exhausted When the lasl
character is removed from the buffer, the firmware executes a JSL to the Recharge
rouLine, whose address was passed when Lhe call lO the SendQueue routine w:as made.
11\is application- upplied routine reloads Lhe buffer with che nexit L of data lo be sent,
a task I.hat could involve som disk ~ctiv1ty if lhe application is performing background
printing from c.he disk. Finally, the routine loads the ountber of bytes in I.he new block
of d'lta to be senL to the X and Y registers (these will oolh be zero l.n case the
background printing is complete) and exccuces an RTL. Requirements for the Recharge
routine arc as foUows :

On entry

System speed • fast
DBR = :bOO
Native mode (that is, m "" 0, x • 0, e • 0)

On exit

System speed= fasl
DBR $00
Native mode, 8-bil m and x (e • 0)
X register = data size (low)
Y register ,. dai.a size (high)

Note that Lhc Recharge routine is called at interrupt tlmc. Therefore, you should
r gard it as an interrupt handler, in the eruse Iha:~ anything it changes mu t be
restored. Also note. thal interrupts a.re disabled during the time the Recharge routine i
running. If too much time is .spent In lhis routine, performanc degradation of
intcrrupl-cric:ical processes will ocrur. An interrupt-<:riticaJ process i.s one such as
AppleTalk I.hat has stringent interrupt-response requirements.

~ Note.· The firmware .reserves U1e last byte in the data bwffer for empty buffer
detection. Make sure I.hat lhe bulfer's sire is 1 byte larger than the amounl of data
yuu place fn it. For example, if GctOutBuffer reveals an oucpul buffer of 2048 bytes,
only data lcngchs less than 2048 should be passed with the background-prin1Jng call
or Recharge routine.

98 Chapter 5; S&rlal-Port Firmware

Extended interface
The Apple IlGS system has extended call reatures not present in Lhe SSC. These calls
. ife made ffitough the exte nded interface and arc divided into lhrcc groups: ha.rd\Va!C
·.~ol, mode cont.rol, a.ad buffer-management features. A li.s~ of the extended
bterface calls foHows \his secrjon.

Y<iu can make a call through the ex-tended imerface using lhe following mel.lmd:

1. Determine the dispatch address by adding the value $CNOO to the value]orated al

SCl'\'12. The byte al $CN12 i~ called Lhe optional contTOI mu.tine offset of the PasC<l.1
1.1 protoc.oL

2. Perform an emul:at1an-mode JSR (DBR • $00) m this dispatch address, with lhe
address of the command HSL (CMDLISTI in Lhe appropriate regislers as follows~

Register

A
x
y

Regl1ter value

Address of CMDLIST Oow)
Ad~ss of CMDLIST (medium)
Address of CMDLIST (high)

-"Every command list staru with a 1-byte parameter count (not a byte counO, a
c:ommand code, and space for a result code, The possible result codes retu.rned are
listed in the section •Error Handling~ earlier in this chapter.

0 Nole: If you wam lo ensure that your application will work with lim.1re syste~ limit
the use of hardware control calls, particularly the Gel SCC and Set SCC calls. If
future systems use hardware olhcr lhan lhe current serial chip (SCC 8530), your
ha.rdwar concrol calls wm most likely have to be changed.

·rn the ~tended serial interface descriptions thac follow, a DFB is an assembler
·direcltve that produces a single byte, a OW is an assembler direclive that produces a
:doubl-e byte (16-birs~ low byte, high byte), and a DL is an assembler dlreoth•e that
produces a double word (32 bits, lh~u is, 4 bytes).

Trnporlani

Differer-it Instructions require that a different number or byt~ be reserved fo the
return parameters. Be sure that the CMDLIST buffer area to which you po[nf Is
fClrge enough to hold all of the bytes of the return parameters ror that command.
I your buffer area rs not large enough. the system may fell.

Extended intarfa ce 99

Mode control calls

GetModeBlts

Returns che current mode bil settings.

CMDLIST DFB $03
soo
$00
$00

;Parameter count
;Command code DFB

DW
DL

1ResulL code (outpul)
;Modcliitlmage (oulpur)

This caU allows the applicaLion to determine the status of various firmware operating
modes. Four bytes G2 bilS) of mode informal.ion are returned To change any of th c
bits, use this aill lO gel the current seuings, then alter the bits of interest, and then use
the SctModeBits call to make the actual modification. (To avofd race conditions in
lhis process, be sure lO disable interrupts during the reading, altering, and writing of
I.he bi1:..~.) The meaning of each bii is described below.

SetModeBHs

Sets lhe mode bilS.

CMDLIST DFB $03 ;Parameler count
;Command code
;Result code (output)
;(input)

DFB
DW
DL

$01
$00
Modcllitimage

Use this call to alter any of the mode biL'i whose function is described above. First read
in the bits using Get\11odel3its, then alter the bilS of interest, a..nd then write the bits by
using this call. (Be sure lo disable interrupts, as discussed in the GelModeBiLs
description.) Th bits marked Preserve should nol be changed; lhcy arc informational
only. Allering these bits will confuse I.he nrmware.

ModeBitlmage is 4 bytes, where bil 0 is th leasl significant bit of the lowest addressed
b;rte and bit 31 is I.he most ignificanr bil of I.he highest addressed byte.

[31.. 24)
[23]

l22J
(21]

(20)

119 .. 161
l .l ;I • • .l.Uj

[15l
[14)

il3l
(12]

1111

100

(Preserve)
l =Ignore commands in the outpul flow
J • Framing error has occurred
(Preserve)
l • Parity error has occurred
(Preserve)
\. ·~~· "'--;/

(Preserve)
(Preserve) 1 • VO buffering enabled
1 = DCD handshaking enabled
(Preserve)
1 = Generate CR at e.nd of Unc

Chapter 5: Serial-Port Firmware

[10) (Preserve) 1 .. input now hall:cd
191 (Preserve)] =Output now halted
rsJ (Preserve) I = Background prinli ng in progress
171 1 =Echo inpul to the video screen
(6] 1 • Generale lF after CR
[5) l = XON/XOFP handshaking enabled
r4l I =Accept keyboard input
Bl 0 "' Delele LP afler CR
!21 1 .. DTIVDSR handshaking enabled
UJ (Preserve) 1 =awaiting XON character
[()) (Preserve) 1 = communicalion.o; mode, 0 - printer mode

Buffer-management calls

GetlnBuffe1

Relllrru the address and length of lhe input bu ff er.

CMDLIST DFB $04 ;Parameter c:ounl
DFB $10 ;Command cod~
DW $00 ;Result code (output)
DL $00 ;Buffer address (omput)
OW $00 ;Buffer length (oulputJ

This call and !he one that follows (GelOutBulTer) are used lo determine the addrcs cs
and lengths o[the current input and output buffers. If background printing is to be
invoked and the application wants lo use the defaul buffer, its address can be retrieved
by these calls.

GetOutButter

Returns the address and ength of the output buff:er.

CMDUST DFB
DPB
DW
DL
DW

$04
$11
$00
soo
$00

;ParameLer count
;Command code
;Result code (oulpul)
;Buffer add.r~ (oulpul)
;Buffer length (output)

Extended Interface 101

SeHnBuffer

Specifies the buffer to contain lhe input queue_

CMDLIST Dt-'B $04 ;Parameter count
DFB 512 ;Command code
DW 500 ;Resull code (output)
DL Buffer address ;(inpu~)

ow Buffer length ;(inpul)

This call and I.he one following (SetOulBuJfer) allow lhe applica!:lon to change the
location and length or t.h.e input or ouLput buffe~. A queue buffer can cross bank
boundaries bur must be fixed in memory while buffering is active .

Seto ul Butter

Specifies I.he buffer to contain lhe outpuL queue.

CMDUST DFB
DFB
ow
DL
DW

Flusl"llnQueue

$04
$13
$00
Buffer address
Buffer length

Discards all characters in the inpul queue.

CMDLIST DFB
DFB
ow

$02
$14
$00

;Parameter count
;Command cock:
;Resuh code (outpul)
;(inpul)
;Gnpul)

;Parameter count
;Command code
;RC!:iuh code (output)

This calJ an<l c.he one following (I-1ush0urQucuc) allow die application lO flush
uHw.i.tll~d ililta rmm tile inplll and. ot.npi..it qi.ict.ies.

FlushOutQueue

C:MDLIST DFB
DFil
DW

$02
$15
$00

102 Chapter 5: Serial-Port Firmware

;Parameler counl
;Command code
;Result code (output)

!nQStalus

Returns infonm1tion about I.he: input queue.

CM DUST DFB $04
DFB .$16
DW $00
DW $00

DW $00

:P aramele r Cou n:t
;Command Code
;Resull Code (oulpu()
; Number of characters in receive queue

(oulpul)
;Time since lasL reoeive char;;u::ter queued
(oUlpul)

~ S~J! ~~Q ~~ 9~!: fQ!!9'!V!f!~ (Ql!~Q§!!!~~~t ca!~~~~~.!°!. ~Q~!!'!~~Of! ;!)?Q~! m~ !f!~~
and output queues. The lnQStatus call additionally returns lhe number of hearlbeal
cioo C1 tick .. 1/30 second) between lhe lime lhe last. character was queued and the time
of the call. Note that for this number to be valid, the application must have turned on
the hea.rtbe:a t system by malting a tool can.

OutQStalus

Returns information about the ou lput queue.

CMDUST DFB $04
DFB $17
DW $00
ow $00

DW $00

SendQueue

Launches background printing.

CMDLIST DFB
DFB
DW

504
518
$00

OW Data length
OL Recharge addre!;s

:Pa.ramel r count
;Command code
;R~ull code (output)
;Number of characters until transmit

queue overflow (output)
; Reserved (output)

;Parameter count
~Command code
;Resull code (outpuO

This call begins the background-printing process. The application must fLJSt set lhe
output buffer address (or use lhe default buffer) lo load lhe data to be output into the
bu ff er sLarting at. the buff er base address. The data then is placed into the buffer. The
call lo SendQueue I.hen must be made specifying the length of the data. in the buffer
:and lhe 4-byte address of a subroutine (the Recharge rout.irie), which will be called by
the cnterrupt firmware when aJl characters have been sent (See the section earlier in
this chapter for further information <1bout Recharge.)

Extends d lntarfa ce l 00

Hardware control cans
Refer to I.he section "Compatibilily" at the beginning of this chapter.

'GetPod Stat

RelLI rns [he port h;udware sla tus.

CMDLTST DPB
DFB
DW
DW

$03
$06
soo
500

iParameLcr count
~Command code
iResuJr code (output)
;Port status info (oulpuO

lhis call is used to get the current status of I.he serial channel al the hardware level.
There are 16 bits of resulL The meaning of these bits is as follows:

[15 .. SJ
[71
[6]
[5)
[4)
[3]
[2]
11]
[OJ

GeSCC

Break/ AborL
Tx Underrun
DSR

DCD
Tx Buff Empty

Rx Char Avail

(Reserved)
SeL to I when a break ~equerice is det.ea:ed
SeL Lo l when a transmit uaderrun occurs
St.ate of the inpuL handshake line
(Reserved)

tale of the general-purpose input line
Set to 1 when re:ady Eo i.rarumil next character
(Reserved)
Ser to 1 when a charaaer is available 1:0 be read

Returns lhe value of the specified SCC register.

CM DUST DFB
DFB
DW
DFB
DfB

$04
08

soo
Register
$00

iParameler count
;Command code
iResu1l code (output)
;SCC Pgis1er number (input)
;Value of SCC rcgi ter (outpul)

GelSCC returns Lhe value in a specified SCC register. The GeL5CC and SelSCC calls
allow direct access to the serial hardware. (See lhe SCC 8530 technical manua] for a
description of the rcgisterb iri the serial controUer chip.) The serial-port firmware
does not need to be initialized for these calls to work; in fact, these call5 should be u.sed
only if the application is handling all serial wks fl.Self :md not using the firmw: re ~tall.

lOA Chopter 5: Serial-Port Flrmware

sets cc
WrLtes a value into the SCC.

CMDLIST DFB $04
D FB $09
DW $00
DFB Regi.<iter
D FB Value

,Par me te.r counl
;Cornm;md code
;Resull code (output)

C. re i lt:r w v.Tite (mput)
.Valw . .: lo wnlll lu Regi ter (input)

lhis call allows Lhc writing of a register in lhe SCL.

GetDTR

l!cturm r.he value of I.he outpul handshake lmr:!

CMOUST DFB
DFB
DW
DW

503
$0A
soo
$00

;f>aramecer oum
; .ommand code
;Resulc uxlc (uul puL)
;Bil 7 i!. lhe Sl te uf Offi (output)

llie this call lo find ou t the currenl selling or the output ha.ndsh.a.kc.. lint: nle .Slate of
thi$ line is rerurned in the mosL sig,nlfic:ant It of lhe returned byte. The line may be sec
by the SetDTR call

SetDTR

Sets the value of I.he output handshake Jine.

CMDLIST DFB
DFB
DW
DW

S03
SOB
$00
DlR SlalC

;Parameter .:uunl
;Command code
, Rc.s ull code outpu t)
, Tlil 7 is the :.L:llc of DTR (input)

Use this call co sett.he wnent mode of the oulput handshake hu~ .

Getlntlnfo

Returns the Lype of inlerrupl (fur u~e in the interrupt wmplcLiun mu Line).

CMOLIST DPB $03 ;Parameter count
DFB $0C ;Command code
DW $00 ;Result {;udc (oulpul)
DW soo ;(output)
DL Completion add ess ;loutpul)

This call allows the application to determine \~h.ich lyJJC of imcrrupt caused the
applic:al.ion's oomplcc..ion roul.ine lo be called. Th~ meanings uf the bi.Ls a.re the same
as for Scclntlnfo.

Extenda<J Interface l 05

Sel lnllnfo

Sets up i.nforrnational interrupt handling.

CMDLIST DPB $03
SOD
soo

iParameter counl
;Command code
;Resu1L code (outpuO
;(output)

DFB
ow
DW
DL

Interrupt selting
CompJeUon address ;(input)

This call allow the application to specify I.he types of interrupts lhat will be passed to
the application's intenupl routine. The firmware should be enabled and buffering
turned on when thi.s call is made. The types of inrerrupcs and the bil:S used co enable
them are as shown in Table 5-7_

The extended 5erial-port commands are summarized in Figures 5-4 and S-5.

Tabla 5-7
Interrupt setting enable bits

[15 .. 81
(7]

(6]
151
[4]
[3]
[2)
[I]

[OJ

meservcd)
Break/Abort
Tx Underrun
CTS
0
DCD
Tx
0
Rx

Sel these to 7.C.l"O

Break sequence dcma
Transmil underrun detect
Transit.ion on inpu[handshake line
{Reserved)
Transition on general-pu.-p~e line
Traosmirt register empty
(Reserved)
Character available

106 Chapter 5: Serial-Port Firmware

GellnBuffor

"° Paramet• count • 804
!i..

~ CGrnmmd COde • SlO
r...

,I

Resul code

BUffer base address

Burrer length

Re urn loco ion and length
or ne receive q eue bu rer

SetOutBurter

Parameter count • S04

Command code• S 13

Re~ code

8utf8f bole addrea

Buff• length

Se1 location end length
o the transmit queue buffer

l nQSlaha

Parameter c~t • S04

COmmand Code• 816

Resul code

Number of choro c ers
In receive queue

umber of ticks since
las1 c aractar arrived

2

2

2

4

2

GelOulBu tre r

ftarometer count • S04

Command code. s 11

Resull code

Butter base address

Bu fef lengtti

Re ur locotion and Ieng h
o he rarnmlt queue buffor

FluslilnQuoue

COmmald code• S 4

e.sul code

Throw away oil charoc ers
In the receive queuo

OutQStatus

Parameter count • S04

Commald code• s 17

2

4

')

2

2 2 Result code

umber of choroc or spaces
lett In ltansm queue 2 2

Reserved 2 2

l?eturn mcelve queue lnformo Ion Return ronsmlt queue lnrorma on

Figure 5-4
Summary of extended seria l-port buffer commands

'

Se tln BuUer

Poramet• count • t04

Command coda• $12

ResLA code

Buffer base aektea

Buffer length

Set loco Ion ano length
or t a roceive queue buffer

FlushOutQueu•

Param.ter ccunt • .$02

Command code• $15

Result code

Throw away oll choraclers
In ma ronsmi1 que e

SendQueu•

Parameter count • S04

Command code• 81

Result code

Data length

Comple11on a<XrM

Beg. background outp

I
I

I

2

2

2

2

2

Extended Interface 107

Se1ModeBlt1 GetPortStat

Result coda 2 2 Resi.Jt code 2.

Bit Se ngs 4 Por hard\vore stotus 2

Re urn flrmwa e mode b s Return he po rt sta us

GetSCC SetSCC

Result code 2 2 Re.suit code 2

sec rag ls:ter nu ber 2 2 DTR state (b 7) 2

Register value read Rorurn sto e of output hondshoko

~etum an sec 8530 register value

2 Re.sulr code

2 2

4

Re urn lnlor cttonal tnterrup1 byte

Figura 5-5
summary of extended ser1a1l·port moda and hardWme control commands

108 Chapter 5: Serlal·Port Firmware

r 6

Disk II
Support

109

This chapter describes Lhe Apple TTGS Disk TI support. Several different types of dfsk
drives can be attached to the Apple UG5, sorn or which c.nnta.ln builL-i.n int Uigence .
This chapter describes lhe methods by which the Disk n product can be connected to
Lhe Apple IlGS. The Apple llGS disk-support system, with its built-in Jnlegraled Wm•.
Machine OWM) chip, accommodaws Disk II (DuoDisk and UniDisk) 5.25-Indt d.riw.:s,
3.5-inch ddves with built-in intelligence (UnlDi<ik 3.5) , and Apple 3.5 drives.

The IWM divides I.he Apple llGS disk port (011 the back of lhe computer) inlo 1/0 ports
5 and 6. The pons are equivalem to Lnternal versions of device drver in:;Lalled 1n
expansion slots 5 and 6, respectively. The Concrol Panel seni.ng for slor 5 or 6
determines whether the 1/0 port or a ca.rd physkaJl'y pregent in that .slot i.o; active .

Porl 6 provides ilic standard Disk II supporL. Disk n bOOl routines arc bui1t imo ROM.
Disk II routines in DOS, ProDOS, and Pascal operate the same as they do in Apple 11
t:ompu[crs prim lo I.he App1e UGS. Direct acc:es.'i lO DL~k IT devices (reading :;ind
writing lracks and seclors, seeking to spec:.ifled tracks, and so on) is provided by
whichever operating 5yslem you boot Sepa.raie firmware sup part is provided only for
booting from Disk II dcv]ccs.

Port S is called Smarl..PDrl. It consists of an expanded version of tlle Smart.Port
firmware used in Lhe 32K Apple JJ ROM. SmanPon [s capable of supporting a
~ombin.ation of chancier and blnck clevice:i: up m 1J1. cotal of 127 de\' LCE!S . ll conlmls !.he
UniDlsk 3.5 and Apple 3.5 drives as well a.s the ROM disk and rhe RAt\i disk. The
Smarl.Porl 11rmware ls dtscussed In detaLl in Chapler 7, ·smartPort Firmware.~

You can alt.a.ch up Lo two Disk !I dnves, two Apple 3.5 drives, and two or more
Ll111Dis'k 3.5 drives to che Apple IIGS dLsk purr, depending on IWM ou(pul
specifications. A maxi.mum of six devices can be connected at any one ti.me. The disks
musl be attached in lhe order shown In Figure 6 1 (Apple 3.5 drives firsL, followed by
UniOisk 3.S drives, followed hy Disk IT drives) .

Apole IGS

l ~-=---'-11
1--11...!_-J .---I _!-=-............... Ji

Figure 6r1

Apple 3 5
drlva

Order o disk drives on Apple llGS disk ports

110 Chapter 6: Dl$k II Support

Apple35
dnve

1/0 por1 5

Un Disk J .S
d!IVO

Dl~ II
{UntDls.\c 5.25 a11d
DuoDlsk. drives)

1/0 port 6

Interface rout.in.cs for ports Sand 6 access I.he IWM usjng slot 6 soft switches. The
firmv.'3.re arbii.raLes between lot use of the same soft switches. If a periph.eral card is
plugged into s1ol 6, the firmware in port 5 can still acres the <lisle connected o port 6
by temporariJy disabling the external peripheral card, performing disk access, and
Lhen reenabling lhe external peripheral card

The pon 6 disk interface li.rmwarc resides in the Sc6oo address space. It supports up LO

two drives, addressed as fuough they are connected co slot 6, as physical drives 1 and
2.. Both drives use single-sided, 143K-capacity, 35-ttack, 16-scctor format Table 6-1
summarizes the Disk 11 1/0 port cha.racteristics.

T·able 6-1
D!sl< II 1/0 port charactertsttcs

Drive number

Commands

] nilial characteristics

Hardware location

Pon 6, drive 1
Port 6, drive 2

INf6 or PRf6 from BASIC or Call -151 (to get
to Monitor from BASIC) and 6 Control-P

AH resets wilh valid reset vector, exccpc Conl:rol-RcscL,
pass control lO sloe 6 drive 1 if this drive ts set (through
Comro1 Panel) as boot device or if scan is selected and
no boot volume is found in higher-priority slot

1nternaJ, $COEO COEF, reserved for Disk l1 and
SmartPort use

Monitor firmware roul:ines None

!JO firmware cnuy points $0600 (port 6 bom addrc.~s)
$C65E (read firsl Lrack, firsl sector and begin cxcculion
of code found there)

Use of screen holes Port 6 main- and auxiliary-memory screen holes
reserved

Chapter 6: Disk II support TT 1

Startup
The Apple IIGS can be su.ned by using eilher a cold tan or a warm 5Urt. A cold stan
dears the machine's memory and tries lo load a.n operating system from disk_ A warm
start stops the program currenlly running and leaves Lhe machine in Applesofl BASIC
with memory and programs intact.

A cold .start can be initiated by any or lhe following:

o turning the machJ ne on

o pressing C-Contml-Reset

D is.suing a reboot command from the: Monitor, from BASIC, or rrorn a program

o pressing Contml-Rese[if a valid resel vector does nm exist

1f you have se[the startup device (from lhe Control Panel) lo slm 6 or if you have
sek:ctcd sam and no boot volume js found in 11 hjgher-priorily slm, lhe cold-start
routine first sets a. number of soft swl!ches (see Appendix f., "Sofl Swilcltes•) and l.htm
passes control to the pr-ogr-am ently point aE SC600. "J1tis code turns on lhe Disk Jl
unit 1 devjce molar and lhcn recalibrales che head to U<lck 0 and reads sector 0 from
m~=n tr.I.Ck. The sector contents are loaded jnto memory starting at address $0800; then
progmm control passes to $0801_ The program loaded depends on the operating
system or applicalion program on !he ilisk.

To restart the sy tern from BJ\.SIC, issue a PR•-6 command; from the Monitor
command mode, issue 6 Conlrol-Pj and from a rnad1ine· langua:ge program, use JMP

~~§99:

A warm sran begins when you press Control-Reset if a v-a.lid resel vec:mr exist<i.
Normally, a warm start leaves you in BASIC with memory unchanged . ff a program has
changed lhe reset vector, the syscem wil] noL perform a warm start LisuaHy , a. progr.un
either performs a cold start or beeps :and docs nothing, leaving you in Lhe rnrrenLly
exeruting program.

112 Chapter 6: Dlsk II Support

SmartPort
Firmware

113

The SmartPort firmware is associated wich l/O port 5 (internal slot 5), IL consists of
assembly-language routin tha support a series of block or character devices
connected to the Apple llGS external di k port The Sma.rtPort firmware converts call<;
to an appropriate format for transmittaJ over the disk port lo control intclifgenl
devices, thaL i , devices that can interpret command streams, such as lhe UniDisk 3.5
drive. The martPort also provides an interface to several unintelligent devices, that
is, device lhal f\equire specific hardware control and employ no built-in intelligence,
through the use o.f device-specific drivers I.hat are accessed through Lhe SmanPort
extended interface calls. Un.intelligent devices supported on the Apple IIGS through
lhe SmartPort indude Lhe Apple 3.5 drive, RAM disk, and ROM di k.

To use Lhe SmartPon interface, a program issues calls similar to ProDOS 8 machine­
language foterface calls. Each calJ consists of a JSR to che SmarlPort entry point,
foUowed by a Smart.Port command byte, followed by poinler LO a table containing
the parameters necessary for the calL ·rn call lo Srnarl.Port Lake two pos.sible forms .
The tandard version of a call allows your program 10 move data lo and from bank $00
of the memory. You use the extended version of lhe call to move data lo and from
other banks of memory.

Locc:ting SmartP·ort
You can determl.nc whelher the Smart:Porc in(erface is installed in a syslem by
examining the ProDOS block-device signature bytes shown here:

$CnOJ • S20
$Cn03 - $00
$Cn05 - $03

You must also verify the existence of the SmartPort signature byte:

SCn07 ~ $00

In the preceding addresses1 n is Lhe sfOl number for which the signature. byres are being
examined. Al.I peripheral cards or porLS with these . ignat-ure-byte value upport both
ProDOS block-device calls and Smut.Port calls. You can examine the rm.rtPort ID
type b>tte lo obtain more information abou any special support chat may be built into
Lhe SmartPort driver. The martPorl ID type byte located at $CnFB has been cncod d
IO indicate the types of devices that can be supported by lhe Smart.Port driver. This
byte pc.rtalns to the interface only. For example, lhe Apple IlGS Sm:artPort mterfac in
internal slot 5 m~y support a RAM disk, but it i.s not a RAM card, so bit O is cleared

114 Ctiopter 7: Smartport Fhtnware

'P-1g1..1re 7-1 iUuscratcs lh contents of this ID Lype byte. Note lha.t a driver that gupports
~nded SmartPort calls must a1so support standard SmartPort c<llls. Hit 1, SCSI,
fndicites support for lhe Small Computer System Interface (SCSJ).

SITiartPort ID type

SCnF S 7 6 S 4 3 2

--- RAM cord

SCSI

ffguro 7-1
Srna rtPort ID ·1ype byte

Locating the dispatch address
On~ yuu 11avt: Ut:le111ll.J1ell 1..haL a Sniarl.F'un lnu~rfac:e ex:li.t.s. In a slot or p<Jf\, you need
to determine the entry point, or dispatch aaaress, for the SmartPort. This address is
dctemt.ined by I.he value found at $CnFF, where n is the lot number. By adding rhe
value al $CnfF to the -address $Cn00, you can calwfale the standard ProDOS block­
dt!vice driver entry poim. More information about chis entry poinl is available in the
ProDOS Technical Reference. The Srnart:Pon. entry poinl is located 3 bytes afa~r the
ProDOS en1.ry point Therefore, the SmartPort entry point is SCnOO pfos 3 plus Lhe
value found al SCnFF.

Por example, if the signalllro bytes for I.he Sm:airlPOrt interface are jn slm 5 and $C5PF
contains a hexadecimal value of $0A, the ProDOS entry point is $C50 , and lhe
SmartPort entry point i $C50A p1ug 3, or SC50D.

loco ting the dispatch address 115

SmartPort call parameters
SmartPort. calls includ everal parameters. Not all parameters appear in every
SmartPort call. The parameter types lhal may be required when making a Sm.an.Port
call are as follow5:

Command name

Command number

Parameter H.•H pointer

Para.meter count

Unil number

Buffer addres~

Block number

Byte counl

Addre.ss pointer

Name used to identify Lhe SmanPort. call

Byte value that you position contiguous in memory with the
JSR lO lhe SmanPon cnuy point; hexadecimal number chat
specifics the type of Smar!Pon: call {bit 6 is cleared to 0 for
s,tanci.1.rd calls and set to 1 for extended calls)

Pointer that you position conliguous in memory with the
command number that painl.'5 to the parame i:er list

The 11.rsE ilem in Lhe parameter list; hexadecimal byte value
lhat specifies the number of paramclers in ch.e pa.ram tcr
lisl

Hexadecimal byte value mat .specifies the unit number of
chc device to or f.rom wh.Lch che SmartPon call is to dicect
I/O

Poimer to memory that will be used in the l/O transaction
(for standard SmartPort calls, this is a wordmwidc pointer
referencing memory ln bank zero; for extended rails, the
pointer is a Jongv ord referencing memory jn any bank)

Number specifying the block address used in an 1/0
transaction wilh a block device (for standard SmartPort
caU.s, this parameter is 24 bits wide; for extended calls, this
para.merer Ui 32 bii.s wide)

Specifies die number of bytes LO be transferred between
memory and lhe device {this parameter is 16 bhs wide)

Specifies an address within the device

l l 6 Chapter 7: SmartPart Firmware

sm.artPo.rf assignment of unit numbers
1he unit number is induded in every parameter Hst ·n-.e urtil number. pecifies which
devioc connected to the slm 5 hardwa.11e responds 1:0 tlrn commands you issue. Calls
thal allow you lo reference the SmarlPort ito;.elf use a unit number of zero. Only Status,
lni~ and Control calJs may be made lO unit zero. Th Apple UGS assigns unil number:;
to devices in ascending order sta.11.ing wilh unit number $01 . Devices are assigned uolr
numbers starting wilh the RAM disk, ROM disk, and Apple 3.5 drive, and finally
proceeding to intelligent devices such lhc Unillisk 3.5.

Allocctfon of device unit numbers
The Apple IlGS implementation of the SmartPort intcraclS with lhe Conttol Pa.ncJ
selection of boot devices. For any given port, a boot can occur only from lhe first
device logically connected to thal port. Booting from Disk II devices is handled by the
slot 6 firmware. SmartPort support is provided to allow booting from any of Lhrcc
types of devices:

n RA!'v1 disk

L1 ROM rusk

l:l Disk drive (Apple .3.5 drive or UniDisk 3.5)

Depending on the devices lhal arc connected to I.he slot 5 hardware, the selected bool
device may not be the first logical device in che chain. To boot from I.he seJeci:ed
device, using the Control Panel scrrin~, the SmartPon firmware logically moves the
5clected device to the first unil in I.he device chain. All devices that were previously
ah~ad of the selected boot device must then be moved Jogically so thal they are now
located behind lhe selected bool device.

The initialization call handles a.ssigrunenr.s of unit numbers in a cwo-scage process. In
Lhe first stage, unit numbers arc assigned as described above, in the section
'SmartPort Assi.grune.nt of Unit Numbers. m In Lhe second stag , the units are
remapped o Lhat lhe sclec~ed boot devfoe is always the first logicaJ device in Elle
chain. If Sc.an is selected as the booL option in the Concrol Panel, the Sm~rtPon places
the first physical disk drive s the fll'Sl logical device in the device chain.

Device remapping is necessary for certain device configurations under ProDOS.
Current .implementations of ProDOS (boch ProDOS B and ProDOS 16) support only
two devices per port or slot if more than two devices are conneccecl lo Uie device
chain, devices beyond the second cannot be ac:cc sed ProDOS 8 and ProDOS 16 get
a.round this restriction b:ir logic.ally mapping devkes beyond the second device so Lhat
!hey appea.r to be connccied ~o slot 2. Using I.his method, ProDOS 8 and ProDOS 16
can support up m four devkes on the chain.

+ Note.: Future versions of ProDOS 16 will support more than two devices per port or
51ot so that no rem~pping of units lo slot 2 will be necessary.

SmortPort assignment of unit numbers 117

Figures 7-2 through 7-6 show device remapping dedved from lhe selccccd boot device
versus the device configuration_ Only a few of the possible remapping variations are
shown_

Smar Porr

RAM disk
stage \. unit l

Apple 3 .5 drive
Stage l. unit 2

Apple 3.5 drive
stage 1. unit J

If dls,1<. Is boot Apple 3.5 drtve RAM d sic Apple 3 .5 drlve
device. hen: Stage 2, unit 1 stage 2 .. unit 2 Stage 2, unit 3

SmcrtPor]11914~•[- -]i-.IJll----.i~- -1.,.4---e,.i~ - -1
Figure 7·2
Devica ma pplng: contJgu ration 1, derlva tion 1

Smm Porl

RAM disk
stc.ge l . uni

Apple 3.5 drive
Stage l , unit 2

Apple 3 5 drive
Stag,e l, J

Ir R'AM di~ Is boot RAM disk Apple 3.5 drive Apple 3.5 drive
ctelAce, than- stage 2, unit 1 stage 2. u 2 Stoge 2. uf'li 3

Sor Port , ,- -1.,.4----.i·t- -ii.....111 -... .. 1- - 'I
Figure 7·3
Device mopping: configura tion 1, dertvo Ion 2

118 Chapter 7: SmartPort Firmware

RAM cilsk ROM disk UnlDis-k 3.5 C!tl\19
Sta Qe l . u nl Stage l . uni 2 stage 1. unit 3

...__s_m_or_tP-or_t __.14 , .. 1- - 1~1-.....i !f - 1414......-t•a.tl - - ~

I RAM di~ Is boot RAM disk ROM disk UnlDlsk 3.5 drive
device, the : Ste ge 2. unit l Sta ~e 2. unit 2 stage 2, unit 3

{ SmortPort 1'4 .. 1- -_1 1- - 1· --1- _,
Rgura 7·4
Device rnoppJng: configura tion 2, dertvo Ion 1

RA disk
stage 1 • unit l

ROM disk
Sm Qe 1. unit 2

Uni Di.s 3.5 drive
S oge l , nit 3

Ir ROM disk Is boot nOM disk RAM sk Uni Dis 3 5 drive
device, l'\en'. Stag,e 2, unit 1 Srcge 2. unit 2 Stage 2. urwt 3

SmortPortl i..-4 __, .. 1- - 11~ S-f -1...-4 1- -1
Figure 7-5
Device mopping: configuration 2, derlva on 2

SmortPort

It dis Js boot
device. then

RAM dls1<
stage 1. unit l

UnlDlsk 3.5 drJve
Stoge 2. uni l

ROM a:sk
stcge 1. unit 2

RAM dis
stcge 2, unit 2

UnfDfsk 3 .5 drive
Stage 1. unit 3

ROM dlSk
sta~e 2. 3

SmcrtPort 14 . ,- -1 .. ·1- -1-- .. ,1- ~]

tlguro 7~6
Device mapplng: configuration 2. derivation 3

SmartPort ossJgnment of uni numbers 11 9

Issuing a call to SmartPort
SmartPon calls fall into two t.-a tcgorics: tandard calls nd extended calls. Standard
SmartPort calls are designed for interfacing Apple rr periph ral . Extended martPort
calls are designed for periph ral devices that c.an take advantage of the 65816
processor's ll!billcy ro transfer data between any memory bank and the per.ipheral
device and may require larger block address ing than ls po ible wii.h Lhe ta.ndard
SmartPort calls.

Po standard Smartl'ort calls, he poinr.e.r following r.hc Sm rtPon command byte ls a
word-wide painter to param lcr list in bank zero. For extended SmartPorc calls, che
poinccr i a longword. pointer to a parameter list in any memory bank.

There are several con t.ra.ints on the use of the SmartPort:

o The stack use is 30-35 byties. P.rogr:ams • houltl allow 35 bytes of stack space for each
call.

o The Sma.rtPort canno1 generaUy be u ed co put anything into absolute zero page
locations. Absolute zero page is defined as lhe direct page when lh dire register i.
sel Lo $0000.

o The ~manPort can be called only from Apple II emulation mode. This means that
the emulation flag in the 6SC816 processor status byte must be et to 1, and the
direc -page register and dala bank reg' t:er mus1 olh be set lO zero, Native-mode
programs wishing co call the SmartPort must switch to emulation mode prior lo
making a martPort call. Such ptogramS may cause corrupt.ion of the contents of
the stack pointer. Refer co Chapter 2, "Notes for Programmers," for more
information abou witching processor modes.

This is an e ample of a standard SmartPorr call:

SP CALL JSR DlSPATCll ; Call 5martPort co~~and dispatc~er
DFB CMDNUM ;Thi a s pec::ilies he command q1p
ow CMDLIST ;1'\ or <:i poi nte r 0 he pa r ;iwete i- li.st in
BCS E RROR ; Carry is SQ on an error

This i an example of a extended SmartPort. caU:

SE' ~xr CALL J SR DI SPATCH ;ca s a rort comma nd d! spatche

bank

DFB
Dfi
DW
acs

CMDN IJM~$4 0

CMDL!ST
~ CMDLIS T

F.RROR

; Thi s specific s he M~ nd d comman d typo
; Low-word pointer t.o he pararn~ r ils
;Hl gh-word point e r o the parame~e r list
; Carry is set on an error

On eornl}letlen cf ll all, aecution rerum~ to tht: RTS addm~ plus 3 for a filand;ird call
and to the RT address plus 5 for an extended call (the BCS statem nl in the
examples). If the call was successful, the C Orig is cleared and lhc A register Is set to O; if
il wa unsucces ful , I.he C flag is set and the A register contains the error code. If data is
transferred from the device lo the CPU, lhe X register contains the low byte count and
the Y register coma.ins the high byte count.

120 Chapter 7: SmortPort Firmware

soo

Th~ complete regf. ter .~rairus upon comp1elion is summarized in Tab1e 7-1 .

Tabla 7· 1
Raglster status on return from SmartPort

65816 sta1us byte

N v B D z c Ace x y PC SP

Suco::.:ssfo I x x x 0 u x 0 0 n n JSR 3 u
~~ndard call

Sucressfu t x x 1 x 0 u x 0 0 n n JSR+5 lJ

~te 11ded ca 11

Lim;u cces.s fuJ x x l x 0 u x 1 Er.ror x x JSR+3 lJ
sumlard call

Unsuccessful x x x a u x 1 Error x x JSR+5 u
extended call

•Nole. X undefined, U .. unchanged, n ~· undefined for transfers lD the devl.ce or number
of bytes transferred when lhe transfer w:as from the device to the host.

Gene.ric SmartPort calls
Generic SmartPort calls are exp1ained in detail in the foJJowing sections.

Status
The Statu.s call returns Stalus information about a particular device or a.bout the
SmartPort itself Drily Stallls calls that return general inform;uion are Jisted here.
Device-specific Status calls can aT50 be implemented by a device for diagnostic or
other informalion. Dcvjcc-.spccific ca.11.o; musl be implemented with a s:tarus code of
$04 or gre<Her. On relUm from a Status call, lhc X and Y registers contain a count of
the number of bytes rr:;1nsferred to the host X contains Lhe low byte of the couru, and
Y conta ms lhe high byte of the counL

CMDNUM
CMDLIST

Sh::indord call

$00
Parameter oounl
T Jnit number
sr~'lll.15 list pointer (low byte)
Status list pnin1er (tngh bvle)
Status code

Extended call

$40
Parameter count
Unil number
Status list pointer (low byte, low word)
Status list point.er (high b;•i:c, low word)
Slatus lisl pointer (low byte, high word)
Slatus HM pointer (hign byte, hjgh word)
Sra L US cnde

Gene rl c SmartPort earls 121

Required parameters

Parameter count Byte value = $03

nit num.b,er 1-byte value In the range .$00, SOI to S7E

Each device has a unique number assigned lo hat initialization lime. The number5 are
assigned according ta the device's posjtion in the chain. A Status call with a unk
number of $00 specifies a call for lhe overall Sman:Pon SlaLUS.

Standard can E:icTBndeo catr

tahlS Ust point.er Word pointer (bank SOO) Longword pointer

This is a pointer to the buifcr lo which the status lli;t is lo be returned. For standard
cal.1.s, this is a word-wide pointer defaulting lo bank SOO. for exlended calls, this is a
longword pointer. Note that the length of lhe buffer va.ries, depending on Lhe .si.atus

rcq ucst being made .

. rnnis code 1-byte value in lhe range $00 to$ P

'Ill.is ts the number of the status request being made. All devices respond to lhe
following request.'l:

StahJlil
code

.$00
$01

02
03

Sta ~us returned

Return device si.alus

Return devjce control block
Return newline status (character devices only)
Rerum device information block (DlB)

Although devices ruust res pond lO the preceding :;t<uus requests, a clevi ce may nol be
able to .suppon. lh e reque5t. In I.his case, the device returns an invalid st.1tus code error
($2.1) .

Stoteode = $00: The device status consists of 4 byl:CS. The first is lhc general status
byle:

Bit Function

7 1 .. Block device; 0 • Characrer device
6 1 = Wrile allowed
5 l .. Read allowed
4 1 = Device onlinc or disk in drive
3 1 ~ Formal allowed
2 1 = Media wril protected (block devices only)
1 I Device currently interrupting (supported by Apple Ile only)
0 1 = Device currently open (character devices only)

122 Chapter 7: SmartPort Flnnware

If Lhe device io; a block device, the next fie1d indicates the number of blocks in the
device. 'D1is is a 3-byte field for standard calls or a 4-by1'e field for extended calls. 11le
lr-:i..;t significant byte ts first. lf I.he device is a character device, 1.hcsc byccs are scl to
zero.

Stoteode = $01: The device con1.rol block (DCB) !s device dependent. ·111e DCB is
typically used ta control various opera ting ch araclerisl..ics of a device. The DCB is set
wi1h I.he corresponding Control call. The first byre is the number uf bytes in tilt:
rnm.rol block. A value of .$00 returned [n I.his byte indkales a DCB length of 256, a.nd a
value of $01 indicates .a ocn lcngt:h of 1 byte. The lcngih of lhe DCB IS always m the
range (lf 1 to 256 bytes, excluding the count byte.

Stalcode c:: $0,2: No character devkes are currently implemented for use on the
SmartPort, so the newline status is presently undefined.

Stafeode = $03; This c:all returns the device information block (DIB). It contains
information identifying the device and ilS type and va.rious other aunbute.."i. The
returned status lisc has the following form:

STATIJST Sfandcrd call

Device sl;;i tus byte
mock fzc (low byte)
B1ock size (mid bylC)
Block si1.e (high byte)
ID string length
lD string (16 byres)
Device type byte
Device subtype byte
Version word

Ext•ndad ea l1

Devic.e status byte
Block size Oow byte, low word)
lllock si7£ (high byte, low word)
Block siz.e (low byte, high word)
Block size (high byte, high word)
ID suing length
ID sLring (16 bytes)
Device type byte
Device subtype byte
Versjon word

'lhe device status i.s a 1-hyte field that is lhe same as lhe general status byte returned In
the device SlalUs call (statcodc = .$00). The block size field is the same as the block seize
field rcLumcd in 1he device Starus call The ID sr.ring consislS of 1-byte prefix
indicating the number of ASCU characters in the ID string. Thie; L~ followed by a
16 byte field containing an ASCll suing idemifying !:he device. The most .i;ignificam bil
of each ASCH character is set lo zero.

[f the ASCil ~Lring consists of fewer than 16 characters, ASCII spaces are used co fill the
unus.cd portion of the sLring buffer. The device type and device subcypc field.'\ are
I-byte flclds. Sevel'31 bits encoded within the DJB subcype byte are defined to indicate
whether a devic.e suppaitS 1.he extended SrnartPort Interface, disk-switched errors, or
n:::movable media .

Generrc SmartPor~ calls 123

A breakdown ofl:h DIB subtype byte is shown in figure 7-7.

S\Jb ype

7 6 5 4 3 2 1 oJ
I

0"' Removat>!0 medla

1 ,. Suppotts disk-swttchgd error!

1 : supports extended SmartPort

IFig1..ue 7-7
SmartPort device subtype byte

Applications requiring specific knowledge about a device should execute a DIB status
and examine lhe type byte_ The subtype byte is used lo obtain informal.ion about
special foatures a device may support, Several device types a.nd subtypes are assigned
ro existing SmartPort devrce.s. These lypes and subtypes a.re as foUows:

Jype Subtype

$00 $00
soo sco
SOl soo
$01 sco
503 SEO

Devlce

Apple Ir memo,ry expansion card
Apple IICS Memory Expansion Card configured as a RMi disk
UniDisk 3.5
Apple 3.5 drive
Apple U SCSI with nonrcmovable media

Undefined Sma.rtPon ,devices may implement the following types and subtypes:

Ty,pe

$02
$02.
$02
$02
$02

$02
S03

Sub,ype

$20
$00
$40
SAO
$CO

SAO
$CO

Device

Hard disk
Removable hard disk
Removable hard disk supporting disk-switched error
Hard disk supporting extended calls
Removable hard disk supporting extended calls and disk­
switched errnrs
Hard disk supporting exlended calls
SCSI with removable media

The firmware version field is a 2-byte field consisting of a number indicating lhe
firmware version .

124 Chapter 7: SmartPort Firmware

SmartPort driver sfatus

l Status call wllh a unil number of $00 and a status code of $00 is a requesl co return l:he
atus of the SmartPort driver. Th.is function returns the number of devices as wen as
tie current interrupt srarus. The formal or the status list returned is as follows:

ffATLlST Byre 0 Nu mbe.r of devices
Byte 1 Reserved
Byte 2 Reserved
Byte 3 Reserved
Byte 4 Reserved
Byte 5 Reserved!
Byte 6 Reserved
Byte 7 Reserved

lfhe number of dcvjces field i~ a I-byte field [ndicaling the total number of devices
b:innectcd to the sloL or port. TI:lis number will always be in the range 0 lO 127.

Possible en-ors

The following error return values are possible.

SO<i
$21
HO-S3P

BUSE RR
BADCTL
$50-$7F

Communkations error
lnva1id sLatus code
Device-specific rror

Generic SmartPort calls l 25

Re·adBlock
This call reads one 512-byte block fro m the block ·device specified by the. unit numrer
pa ed in the parameter list The block is read into memory startlng al the add.re s
specified by the dam buffer poinrer passed in the parameter list

Standard can Extended eafl

CMDNUM $01 $41
CMDLlST Parameter count P rameter courn

Unit number Unit number
Data buffer pointer (low byte) Data buffer pointer ()ow byte, Iow word)
Data buffer pointer {high byte) Data buffer pointer (high byte, low word)
Block number (low byte) Data buffer pointer Oow byte, high word)
Block number (middle byte) Dai:a buffer pointer (high byte, high word)
Block number (high byre) Block number (low byte, low word)

Block number (high byte, low word)
Block number (low byre, high word)
Block number {high byte, high word)

Required parameter1

Pa.ram ter count Byt value = $03

Un.ft number 1-byte value in the range $01 to S7E

Standa d call

Data buffer p lote:r Word pointer (bank SOO)

lb ended can

Longword point r

The data buffer pointer points to a buffer int which !he data Is to be read. For
tandard calJ , 'th.is is a word pointer inro bank SOO. For extended calls, the pointer is a

longword specifying a uffer in any memory bank. The buffer must be 512 bytes long.

mo number

Standard ea'll

3-byte number

Extended call

4-byle number

The block number is the logica1 address of a block of data lo be read. TI1ere is no
general connection between block numbers and the layout of tracks and cctors on the
disk. Translation from logica.1 Lo physical blocks is performed by the device.

Possible enors

The following error return values are possible.

$06
27

$2
$20
$2F

BUS ERR
TO ERROR
NODRIVE
BADBI.OCK
OFFLlNE

Communications error
1/0 error
No device connected
Invalid block number
Device off line or no disk in drive

126 Cl"lapter 7: SmartPort Firmware

WriteBrock
lbe Write caU wrires one 512·byte block to the b]ock device specified by l:he unit
number passed in the parameter List The block is written from memory scan.ing al the
tddress specified by the data buffer pointer passed in the parameter list

standard call Eidended co[I

GMDNL1M $02 S42
CMDLIST Parameter count Para.meter count

UnlE number Unit number
Data b Llffcr pajnt:cr (low byte) Data buffer pointer Qow byte, low word)
Data buffer pointer (high byte) Data buffer pointer (bigh byte, low word)
Block numbe. Oow byte) Data buffer pointer (low byte, high word)
Block number (middle byte) Data buffer pointer iliigh byte, high word)
Block number (high byte) Block number (I ow byte, low word)

Block number (high byte, low word)
Block number (low byte, high word)
Block number (high byte, high word)

Required para mete rs

Panmeter count Byt value = S0:3

Unit number 1-byte value in the range $01 to 57E

Shmdard call

Data buffer pointer Word pointer (bank $00)

Extended call

loQgword poi nrer

The data bu.ff er pointer points to a buffer lhat the dala is to be written from. For
stindard caUs , this is a word pointer inco bank $00. For extended cans, lhe pointer L5 a.
longword specifying a buffer in any memory bank. The buffer must be 512 bytes long.

Block number

Slam:ilard call

3-byte mJ.nibcr

bta nded c:c'll

4-bym: number

The block number is the logical address of a block of data to be wrincn. There ts no
~eraJ conneaion between block numbers and I.he layouL of tracks and sectors on lhe
disk_ The translation from logical to phy. fca.l block ls performed by the devic~.

Potslble e:nors

The foUow[ng error return values are possible.

$06
$27
S28
S2B
$2D
S2F

BUSERR
IOERROR
NO DRIVE
NOWRITE
BAD BLOCK
OFFllNE

C ommu nka lions er:ror
1/0 error
No device connected
Disk write protected
lnval id block number
Dev1ce off' line or no disk in drive

Generic SmartPor t calls 127

Format
The Format caU formats a block device. Note that lhe formatting performed by this
call is not linked to any operating system; it simply prepares all blocks on the medium
for reading and writing. Opera.ting-system-specific cataJog information, such as bit
maps and catalogs, are not prepared by this call .

CMDNUM
CMDLI T

Standard call

$03
Parameter cou nl

Unit number

Format call implementation

Extended can

$43
Parameter count
Unil number

Some block devices may require device-specific inforrruu.ion at format time. This
device-specific information may include a spare list of bad blocks to be written
following physical formalting of lhc media. ln this case, it may not be desirable lo
implement the Format call so that a physical format is actually performed becau e a
pare list of bad blocks may not be available from the vendor or because of lhe time

involved in executing a bad-block scan It may be more desirable to implement
device-specific Control calls to lay down the physical tracks and initialize lhe spare
lists. If this latter procedure is followed, the Format call need only return to the
application with the accumulator set Lo $00 and Lhe carry nag cleared Th.is procedure
should be use<l only when Il is nor desirable for lhe application Lo physically format
the media.

Required parameters

Parameter count Byte value = $01

Unit nnmbec Byte value in Lh.e range $01 to $7E

Possib e errors

The following error return values are possible .

$06
$27
$28
$2B
$2F

BUSERR
IO ERROR
NO DRIVE
NOWRlTE
OF FUNE

Communications error
I/O error
No device connected
Disk write protected
Device off line or no disk in drive

128 Chapter 7: SmartPort Firmware

Control!
The Control can sends control information to the devi e . The information may be
either general. or device specific.

Standard call Extended call

CMDNLJM 504 $44
CMDLIST Parameter count Parameter count

Unit number Unit number
Control list poinc ·r (low byte) Control lisl pointer Gow byte, low word)
Control list pointer (hig.h byte) Control li$l pointer (high byte, low word)
Control code Control list pointer (low byte, high word)

ConLrol lisL poinler (high byte, high word)
Con1:tol code

~equired parameters

Puameter count Byte value • S.03

Unit number B}'le value in !he range $00 to $7E

Slandard call &tended call

Control ll.tt pointer Word pointer (bank SOO) Longword poin er

The control lisl is a pointer to the user's buffer from which I.he conlfol information is
to be r'ead. For lhc standard Control call, the pointer is a word value into bank $00.
For the extended Control call, the poimer is a longword value lhat may reference any
memory bank. The first lwo bytes of the control iisl specify lh lenglh of the conLrol
!isl, with the low byte first. i control list is mandatory, even if the call being issued
does not pass information in the Usi . In this latter case, lengl.h. of zero is us; d for !he
first l\vO byte _

Control code Byte va1ue
Byte value in the range $00 to $FF

The control code is lhe number of the comrol request being made. This number and
lhe function indicated :are dev:ice specific, except that ai11 devi, es mu L reserve the
followlog codes for specific functions:

Code Conhol tunc:tlon

SOO Resets lhe devi.ce
$01 Sets device control block
~02 Sets newline t.atus (character devices only)
$03 Services device interrupt

Code = $00: This call perform a soft reset of lhe device_ IL gene rally retums
housekeeping values to some rescl value.

Generic SmarWort calls 129

Cede = $01: This Control call sets the device concrol bJock.. Devices generally use the
bytes in l.his block to control global aspects of the device's operating environment.
Because chc length is device dependent, the recommended way to set the DCB is to
read in the DCB (with the Star:us call), alter the bits of interest, and then write the same
string with this call. The first byte i.'l the length of the DCB, excluding I.he byte itself. A
value of $00 in the leng!:h byte corresponds co a DCB si:ze of 256 bytes, and a count
value of SOl corresponds to a DCB size of 1 byte. A count value of $FF corresponds lo
a DCB si.ze of 255 bytes.

Possibre errors
The following error rerum values are possible.

$06
521
S22
S30-S3f

I nit

BUSERR
BADCTL
BADCTLPARM
UNDEFlNf.D

Communications error
Invalid control code
Invalid parameler list
Devicca:;pecific ermr

The lnit call provides !:he application with a way of resetting the SmartPort.

CMDNUM
CMDLIST

standard c all

$05
Parameter count
Unic number

Required parameters

Extended call

$45
Parameter count
Unit number

Parameter count Byte value = $0]

Unlt number Byte value = SOO

The SmarlPon will perform initialization, hard resetting aU devices and sending each
their device numbers. This call may not be made to a specific unit; rather, it must be
made to che SmartPon as a whole. This call may not be executed by an application.
Issuing this call in conjunction with Control Panel changes may rclocale devices
contrary to the ProDOS device list Applications wishing to re.sel a specific device
should use the Control call with a control code of $00.

Possib le en ors

The following error return values are possible.

S06 BUSERR
S28 NODRIVE

Communications error
No device connected

130 Chapter 7: SmortPort Firmware

Open
Th.e Open call prepares a character devke for reading or writing.

Note lhat a block device will not accepl this call, but will reLum an invalid command
error ($01).

.:MDNUM
CMDLIST

Stando1rd ·call'

$05
Parameter count
Un.it number

Requited parameters

Exhmdod call

$45
Parameter count
Un.it number

Parameter count Byte value= 501

Unit number Byt·e value in lhe range $01 to $7E

Poss,lble enors

The following error rerum values are possible.

SOl
$06
$28

BADCMD
BUSERR

OD RIVE

Tnvalid command
Communications error
No device connected

The Close call ~ells an extended character device that a sequence of read or wrim
operations has ended For a printer, 1Lhis call could have I.he effect of flushing the prim
buffer.

Note lhat a I lock device will not accept I.his call, bul will return an invalid command
error ($01).

CMDNUM
CMDLIST

standard call

$07
Parameter count
Unit number

Extended caD

$47
Pararne~er count
Unit number

G.eneric Smm Por calls 131

~equlred parameters

Parameter count Byte value= $01

Unlt number Byte value in the range $01 to $7E

Poulble enors
The following error return values are possibl.e .

$01
$06
$28

Read

BADCMD
BUSERR
NO DRIVE

Invalid command
Communications error
No device connected

The Read call reads the number of byleS specified by the byte count into memory. The
starting address of memory that the daca i read inlO is specified by lhe data buffer
pointer, The address pointer references an address wirhin the device lhac the bytes are
to be read from. The meaning of I.he address parameter depends on the device
involved AJthough this call is generally intended for use by character devic:es, a block
device might use chis call to read a b1ock of nonstandard size (a block larger rn.an 512
bytes). Jn chis latter case, lhe address pointer is inlerpreted a a block address.

Standard can Ex.tended can

~MQNTJ !"t ~Q§ ~48
CMDLIST Parameter count Parameter counL

Unic number Unir number
Data buffer pointer (low byte) Data buffer pointer Oow byte, low word)
Data buffer pointer (high byre) Daca buffer pointer (high byte, low word)
Byre count (low byte) Data buiTcr point.er (low byte, high word)
Byte count (high byte) Data buffer pointer (hJgh byte, htgh word)
Address pointer (low byte) Byte count Oow byte)
Address pointer (mid byte) Byte count (high byte)
Address pointer (high byte) Address pointer Oow byte, low word)

Address pointer (high byce, low wo:rd)
Address pointer Oow byte, high word)
Address poimer (high byre, high word)

132 Chapter 7; SmartPort Flrmwar·e

Required paJameters

Parameter count Byte value = $04

Unit numiber 1-byte va1ue in the range $01 to S7E

Slandard cell

Data buffer· polnter Word pointer (bank 00)

h:lended c·all

Longword pointer

For standard calls, 'this is I.he 2-byte pointer to a buffer Imo wh.icb l:he data is to be
read For extended calls, the pointer is a longword specifying a buffer in any memory
bank. The buffe:r mus t be 'large ·enough to accornrnodate ch number of bytes
requested.

Byte oount 2-byte number

The byte count specifics the number of by~es lO be [r.tosferred. AJI nf the amcnl
implememations of the Sm:anPor utilizing the SmanPort Bus have a Limitation of 767
bytes. Other peripheral cards supporting the Sma.nPort inferface may not have this
Hmitation.

Skmdc.rd call

Address point.er 3-byte address

Extended call

4-byte address

The address is a device-specific pa ameter u . ual.ly specifying a source address within
lhe device. This .call m.igb~ be implemented w Lth an extended block device u ing I.he
address as a blocl< address for ac:oossing a nonstandard bJock. For example, such an
implemcntalion allows the App1e 3.5 drive and UniDisk 3.5 drive to read 524-byte
Macimosh bloc:!k& from 3.5-incb media.

P·oss ble errors

The following error re:tu rn ''alues are possible.

S06 BlJSERR
S27 lOERROR
sza NODRIVE
S2B NO\VRITE
$2.D BADBLOCK
S2F OPFLINE

Communications error
I/O error
No device connected
Disk write protected
Invalid block number
Device off line or no disk in drive

Generic SmartPort calls 133

Write
The Write call writes the number of bytes specified by I.he byte counl lo th device
specified by the unit number. The slarting memory address lha1. lhe data is read from
is specified by I.he data buffer poini.cr. The address pointer references an address
wilhin the device where the bytes are to be written. The meaning of the add.ress
parameter depends on I.he device involved. AJthough this c:a1J is generally intended
for use by character devices, a block device might use this call lo write a block of a
nonstandard s.ize (a block larger than 512 bytes). ln lh.is latter case, the address field is
interpreted a a block address.

Stondard calf, E~tended calt

CMDNUM $09 S4.9
CMDLlST Parameter count Paramcrer count

Unit number Unit number
Oat.a buffer pointer Gow byte) Data buffer pointer Oow byte, low word)
Data buffer po.inter 01Jgh byte) Data buffer poinrer 01igh byte, low word)
Hyte count (low byte) Data buffer pointer (low byte, high word)
Byte count (high byte) Data buffer pointer (high byte, high word)
Address pointer (low byte) Byte count (low byte)
Address poinwr (mid byte) Byte col.lilt (high byte)
Address poinLer (high byte) Address pointer (low byte, low word)

Address pointer (high byte, low word)
Address pointer (low byte, high word)
Address pointer C high byie, high word)

Required parameters

Parameter count

UnJt number

Byte valu = $04

1-byte value in the range $01 LO $7E

134 Chapter 7: SmartPort Firmware

standard ca11

Data buffer polnter Word pointer (bank 00)

Extended call

longword poin(er

For standard caJ!s, l:hls is the 2~byte poio ler lO a buffer into which Lhc data is co be
read For extended calls, me pointer is ai longword specifying a buffer in any memory
bank The buffer must be Jarge enough Lo accommodate ch number or byte
requested.

Byte count 2-byte number

The byte count specifies l:he number of bytes lo be 1.ransfe rred. All of I.he airrent
imp!emenlaLlons of the SmartPo.n utilizing the SrnartPott Bu have a llruita.tion of 767
bytes. Olher peripheral cards upportlng chc Smart.Porl interface may not have thi5
Umitation.

Address polnter

Standard call

3-byce value

Extended call

4.-byte value

The address is a dcvk:e-specific parameter usually specifying a. destinalion address
within the device. This call might be implemented with a block devic~, u. ing Lhe
address as a .lock a.ddre.ss for accessing nonstandard block. for example, such an
implementation allows the Apple 3.5 drive and UniDisk 3.5 drive to write 52 by1e
Macinto h biock w 3.5-inch medi .

Possib1e errors

The following e rror return value ~ arc pos iblc.

$06
$27
$28
$2B
$2.D
$2F

BUS ERR
IO ERROR
NODRIVE
NO\t'RITE
BAD BLOCK
OfFLlNE

Communications error
I/0 e rror

o device connected
Disk w rite p rorected
Invalid block number
Device off line or no disk in drive

Generic SmartPort calls 135

Tables 7-2. and 7-3 summarize chc command numbers and parameter lists for standa.rd
and excended SmanPon calls.

1iabl 7-2
Summary of standard commands and parameter lists

Command StahJI ieadBlock WrlteBlo,c k Fermat Conlroll lnl1 Open Close

O.IDNIJM $00 $01 $02 S03 :S04 sos S06 $07
CMDUST
byte

0 $03 $,03 so:; $01 $03 Sot $01 $01

Uni!. Unit Unit Unll Unil lJnit Unit Unit
number number number number nurnbe:r number number number

2 Sl;;itus Data Dal.a Cone.ml
Ii.st buffer buffer Ii
pointer pointer poinler polnt.e.r

3 .'itatu Data Dal:a. Control
list buffer buffe r list
pointer pointer pointer pointer

4 Status Block Block Control
code number number code

5 Block Block
number number

6 Block Block
ni 1mh~r nl•mhPr

7

8

• Th is p:iramcte r i.5 device specific_

Read Write

$08 $09

$04 $04

Unlc nit
number number

Data Data
buffer buffer
pointer polnter

Data Data
buffer uffer
pointer pointer

Byte Byle
count count

Byte Byte
COUnl count

o!o /Vote.- 'The Read byte coun and I.he Control call list conlents in some SmanPon Implementations
may not be far er Lhan 767 bytes.

u pon return from the Read call, che byte count bytes will comain Lhe number of bytes acr1.1ally read
from lhe device_

136 Chapter 7: Smartport Firmware

Tob!:e 7·3
Summary of extended common® and parameter lists

·Command

<MDNUM

CMDLIST
byte

I}

3

•t

6

7

8

9

10

II

Stch.11

$40

S0.3

Unl
number

St-.tus
list
point.c.r

Status
list
pointer

Status
list
pointer

Status
Us.t

pornter
Status
code

had!Block WrU•B toek

$41 $1.2

03 $03

Uni!. Unl
numbi:tf number

Data nm
bu ffe:J" buffer
pciimcr pointer
Data Data
bu ffer b uffer
point et" poinlcr

Data Data
buffer buffer
pointer pointer

Data Data
buffer buffer

pointer pointer

Block Block
number n umber

B!Ock Block
number number

Block Block
number number

Block Block
number number

• This parameter is devlce speciflc.

Format

$43

' 01

Unll
number

Control lnH Open Close Read Write ---- - --
$H 545 46 $47 $48 S49

$03 $01 SOl $01 :SM SM
Un.II Unit Uni. Unit Unit Unk
number nu mber n umber number rrnrnber :number

Conlrol Data D31.a
lisl buffer buffer
pomter l:Xlinlet pointer

Control Dalli. Daw.
list buffer buffer
poimer poimer pointer

Control Data Data
list buffe1 buffer
pointer pointer pointer

Control Data Data
list buffer buffer

po1nLcr pointer poLnter

Control Byte Hyle
code count counL

Byte Byte
coun CO\JUL

(I> Note: The Read byte count and the Comrol call Ii.st comeuts in some Smart.Pon 1mplemenc.ations
m.ay not be larger than 767 bytes.

Upon return from the Read call, i:he byw coum bytes will contain the number of byies actually read
From the device.

Generic SmortPort cans 137

Dev1ce~speciflc SmartPort calls
In a.ddition w lhe cnmmon command set of Smart.Port calls already listed, a dev:"ce
may implement Hs own device-spedfk calls. Usually, these calls are implerneoted as a
subset of Uie Sman:Port Status or Control can rather than as new commands.

SmartPort calls specific to Apple 3.5 disk drive
Seven Apple 3.5 drive device-specific rn.IJs are provided as excension co che Cormol
caR These dev1ce-specific control calls may be used only with lhe Apple 3.5 drive. To
dcLermine whether a device is an Apple 3.5 drke, examine me type and subtype bytes
returned from a DlB status ca.IL Ir lhc 1ypc byte is returned with a value of 01 :ilnd me
ublype byte is returned with a value of $CO, lhen the device f.5 a.n Apple 3.5 drive_

l3ccausc dcvicc·spccific call to the Apple 3.5 drive are implemented as Control calls,
only Lhe con1.rol code and coru:rol list for these calls are defined here. Refer to che

mart.Par Control can section earlier in lhis chapter for information about lhc
command byte and paramecer list

The following Information about Eject and SelHook should be treated as an extension
lo Lhe extended SmanPort Coni:rol call.

Eject

Eji.:ct ejeclli lhe media from a 3.5-inch drive.

Conrrol code

504

SetHook

Confrol Ust

Count low byte
Count high byte

$00
$00

SeUlook rcdjrcct:s routines irnernaI to the Apple 3.S drive. The routine i;o be
redirccled rs referenced by the hook reference number. The address that the routine is
to be rcdirern::d m i pecified by the 3-byte address field in the control lis~ .

Confrc~code

sos
Conho l list

Cou nr low byte
Count high byte
Ho()k rererence number
Address low
Address high
Address bank

138 Chapter 7: Smar Port Firmware

$04
$00
$xx
$xx
$xx
$xx

Valid hook reference nu mber.s and their associated roulines are as follows:

Ho ct

${11

$(12

$(13
$04

. sos
$06
$07

RouHna

Read Address Field
Read Data Field
Write D~U:I Field
Seek
Format Disk
Write Track
Verjfy Track

Read Address Field
The Read Address Field routine reads bytes from me disk unlil jt finds the address
mark.'i and a secror number specified as inpuc paramelers for rhe rouline. The Read
Data Fit:!ld .routine reads a 521 byle. Macintosh block or 512-byte Applen block from
tlle disk.

Wr!te D~ta Field
The \'(:'rite Dai.a Pield routine write a 524-byte bJock of da1.a lo che disk. For Apple R
b[ocks, lhc fir.sl 12 byres wil.I be wrilten as zero,

Seek
Th~ Seek roulirie positions the read a.nd write head over the appropriate cylinder on
the c.li.sk..

Format
The format routine writc.s address marks, data marks , zero"d data blocks, checksum,
and end-of-block marks .

Write Track

TI~c W.rile Track roullne is called by the formatte r to wrile one track of empty blocks.
The number of blocks wricten depend., on Lhe track lhac the read and write head is
rnsi1.ioned over .

SmartPort ca lls specific to Apple 3.5 d isk drive 139

Figure 7-8 demonstrates rhe phy ical layout of lhe format Lhat this command wrices.

Address
AddJ9SS morks

~ _§
DS AA 96 0 e u

QI ...
"1

Figure 7-8
Dlsk-sec or formot

Verify

... Cl
Q) E "O

~ iii

Qd

E
:J ...
~
u

I ill
J::
u

G~
Data Dot a eld mar s

§ a. 0. 5-10 bytes sync D5 AA AD M2 dctc bytes
iii i;; u c

Cl>

The Verify rouLine rs called by the formatter [0 verify I.hat t.he data written by the Wrlcc
Track routine wa wricten correctly.

ResetHook
RcsetHook restores lhe default address for the hook specified in the control list.

Control code

$06

SetMork

Control ll•t

Count low byte
Count Wgh byte
Hook reference number

SOl
soo

SeLMark changes individual bytes in the mark tables. The count field specifies the
number of bytes in the mark table lo be writLen plus L The start byte references an
offset \nto \.he ma1k tab\e to iHhlcl\ \he new bytes ue to 'be written. ~n<ls checking is
performed to make sure Lhe byte count does not overflow the intemaJ mark table .

Control code

$07

Conlro,I li st

·Count low byte
Count high byce
Start byte
Data

$xx
$00
Sxx

140 Chapter 7: SmortPort Firmware

EOB
morks

E
:i

"' .:.l De AA FF u
CJ)
.c
u

The default vaJues for the Mark tab1e are as follows;

Volu• Byte number Vc'lu Byte number

$FF 0 sector number $AA 11
$AD 1 data marks $DE 12
MA 1 $FF 13
$DS 3 $FF 14 i.nterheadcr gap
$FF 4 .$F.F 15
$FC 5 sync byres $Ff' 16
Sr-3 6 $FF' 17

$CF 7 $96 18 address marks
S3F 8 SAA 19
SFF 9 $D5 20
$FF 10 bit-slip marks $FF 21

Reset Mark
ResetM:ark resLOres individual byte.'> in chc mark tables lo the default vaiue.s. The count
field defines Lh.c number of bytes in lhe mark table to be restored p1us 1. The start: field
defines where in lhe mark table the bytes are to be restored.

Cont1ol code

SOB

SelSides

Control llst

Count low byte
Count high byte
Start byte

$xx
.$00
$xx

SetSides sets the number of sides of the media to be formatted by the Format can. le
~upports both single-sided and doub~e-sided medi.a. lf the mo t Ignillca.n.t bit of lhe
number of sjdes field is sel m 1, lhen do1Jblc- ided media are formatted. lf the moSL
significant bit is cleared to 0, then single-sided media are formatted.

Contro l code

$09

Control llst

Count low byte
Counc high byte
Number of sides

Setlnterleove

$01
$00
$nn

Setinlerleave sets Lhe sector interleave lO b fayed down on lhc disk by the Pormal call.

Conlrol c: ode·

SOA

Conlro l ll st

Coum low byte
Count high byte
Interleave

$00
$00

01 co $QC

SmartPort calls specific to Apple 3 .5 disk drive 141

SmartPort calls specific t,o UniD~sk 3.5
Five UniDisk 3.5 device-specific calls arc provided as extensions lO the Conl!ol and
Status calls. These device-specific calls may be used only wilh the UnIDisk 3.5. To
determine whether a device Is a Uni Disk 3. 5, examine the type and subtype bytes
rcwrned from a OTB status call. If the type byte is returned wilh a value of S.01 and lhe
subtype byte is rcu.11ncd with a value of $00, then tlle devke is a UnIDisk 3.5. Only the
comrol code and control Ji.st are defined for calls here 1mplemented as extensions to
the Conlrol call. For calls implemented as extension co lhc Status can. only lhe status
code and sta.Uls Lisr are defined Refer lo the senions disOJssing the SmartPo.rt Control
and Status calls earlier in this chapter for more information about these calls.

EJect
Eject ejects the media from a 3.5-inch drive.

Coritfol code

$04

Execute

Conttol tlst

Couni low byte
Count high byte

soo
$00

Execute dispatches the intdligent controller in lhe UniDisk 3.S device to execute a
65C02 subroutine. The register setup is passed to lhe routine lo be executed from the
control list.

COnlro! code

$05

Con1rcl list

Coum low byte
Count high byte
Accumu1ator value
X regisccr value
Y register vaJue
Processor scatus value

$06
$00
.$x:x
$xx
$xx
$xx

Low program coutucr $.xx
High program counter $xx

142 Chapter 7: SmartPort Flrmware

SelAddtess
SetAdclles.s sets lhe address in the UniDUik 3.5 conuoller memory space into which the
ImwnLoad call loads a 65C02 routine. The download address mu.st be set to free space
111 the UniDisk 3.5 memory map.

Conlro.I coda

Download

COl'ltfOI 119'

Count low byte
Count high byte
Low byte address
High byte address

$02
$00
$xx
$xx

Download <low nJoads an executable 65C02 rou line into me memory re.~idenl 1n lhe
UniDisk 3.5 controller. The address that i:he roull.nc rs loaded into is set. by lhe
SetAddress call. The count fleJd must be sel to the lenglh or lhe 65C02 routine La be
downloaded.

Con.tro1 cod• Control 11 st

$07 Count law byte $xx
Counl high byre SxJC
EJ[erutablc 6SCOZ routine

UniDiskStot
UniDiskStat allows an application to gee more iniorma.tlon about an error thal occurs
du.tin~ a read or W'ritc operation. Lt also allows an application lO ace~ the 6 5C02

register state alter dispatching the UniDiBk 3.5 controller co execute a 65C02 routine via
th~ Execute call.

Memory-mapped VO addresses interna] to l:he UniDisk 3.5 controller are shown jn
Figure 7-9 and Tables 7-4 and 7-5.

stah.u cod•

$05

st,atus l'ilt

Byi:e
Soft error
"Retries
Byte
A regjste r afrer execute
X rc~tcr after execule
P register after execute

S04
soo
$xx
soo
Sxx
Sxx
$xx

SrnartPort ca1 Is spsclflc to UnlDlsk 3. s 143

'UniDisk 3.5 intemal functions.
Copy protecting a UniDisk 3.5 is more complica:ted than protecting a Disk Il because
r.he 3.5-incb disk has its own conlrolJer. The drive ft~elf (beyond the small 65C02
syscem !'hat controls iO is somewhat intelligenlt performing such operalions as
stepping the drive lo a half trade is not possible wilh the double-sided ony di.sk

The design of I.he Unillisk 3.5 firmware, however, affords the copy-protection
eQgineer (CPE) tools with which to alter the data on the disk sufficiently to make
copying very difficult. Jn all cases, code or other inform.al.ion is downloaded to the
controller's on-board RAM. The firmware provides a defined method for secllng
RAM, but not for reading it; this increases the difficulty of the copy-protection buster's
)ob. Information downloading Is accomplished using the Set_Down_Adr and lhe
Download commands, detaHed in lhe Smar1Pon documentation.

Further, running rubble-copy programs with the UniDisk 3.5 is difficult to do. Nibblc­
copy programs typically dump an enr.ire 1.rack into memory and then try to make sense
of what they have read and duplicate I.he data stream. The Unillisk 3.5 controller
conta.ins only 2K of RAM, and lhis limitation makes crack dumping and copying
extremely difficult A track would have to be dumped in 1 or 2K pieces, and then the
pieces would have to be correctly reassembled, processed in host memory, and
somehow wriuen in 1 or 2K pieces to the target clisk. ("The difilcully of creating a
reasonable bit copjet means that elaborate copy-procection measures may no be
neccs ary and that relativdy simple rec:hruques, such as imply changing mar~ , will
suffice.)

Mark table
All address and data marks used by the RdAddr, ReadData , WrileData, and Forma L

routines are located in page 7..ero. lbe following delaLls the table values and their
functions (note I.hat Lhese tables are II reversed from the order in which they appear
on the disk)~

Function, Addr&n Default vclu&

Dal.a marks $008E $AD, SAA, $05
Data-sync marks . 0091 $Ff, $FC, SF3, $CF, $3F, FF
Bit-sUp marks $0097 $FP,. $AA, SOE
Address marks $009F $96, $AA, DS

The CPE can alter th values in this table and formal a disk with the new marks, and
read and write operations will recogni:re sectors with these new marks.

lA.4 Chapter 7: SmortPort Firmware

The CPE musr, holVever, be carf!ful when changing che marks. The address, data, and
blt-sllp marks were c:h.osen so thal no bytes in 1:.he user's encoded data muJd he
mistaken for them, and lhe CP E shouJd consider lhis when changing the marks_
Probably I.he safesc marks to alter are me bic-sHp marks because lhe firmware n~ver
uses lhe.sc to try to find a field; they are simply double checks to ensure lhat
syncbronii.alion was mainlained during a read operation .

The W..c:a-sync marks oould c:onceLvably be altered Bnd some idemifying mark wed
instead. The CPE should be aware, however, lhal this field i!i partially r written every
time l:he block is written and that whatever marks are lhere must guaramee the
~rorrizalion of lhe IWM so lha[the firsl data-field mark {normally $D5J can be
read.

Hook ·tabl.e
Each major disk-access routine has a JMP instruction to jump through a hook in zero
page. Hooks in these roulin.c.s are collected in a section of zero page known as the hook.
table. Each hook is a }-byte 65C02 JMP irrslruction thal vectors to lhe corresponding
routine. This allows the CPE to install routines to take che pl:ice of ones ~ch as RdAdd.­
md Re.adDala. Bemuse lhe hooks are reset when power up occurs or a reset control
call is issued, the CPE may preserve the "default" address]n a hook, point I.he hook at
his or her own muline, and then have this new routine end by jumping to lhe old
rouline. Titls in effect aUows lhe CPE to insert jn his or her own code al s trn.Legic po in rs
ln the disk read and write processes.

The CPE must ensure th~ any code instalJcd in place of a roucine emulate t:he
beha VJOf Of the code iL replaces , The funclionaJ and flag return specificalions foi: the
rouUne must be obeyed; otherwise, higher·!evel mutines will become confused. 'The
£hookable" routines are as follows:

Add'l'e 11 Vector

$0072 HdAddr
50075 Read.Data
$0078 WrjteData
$007B Seek
$QD7E Formal
$0081 WrilcTrk
$0084 Verify
$0087 Vee car

Routln a ~u nctlon

Find and decode an address field
Find and load a data field into RAM
Write data-sync field rnark.s, data, bH-siip ma.rks
Tum motor on and seek the specified track
Wrile address and data fields Call zeros)
Seek head and write t.rac:k full of sectors
Verify lhe integrity of arr entire track
Dispatch a command received from Lhe host

SpedficaLions for each of these routines follow. Note lhat you will be able to use lhese
functions more cffcctlvcly l.f you understand the 3.5-Inch disk dau formal

When bits of bylc.s arc spcdficd, lhcy are numbered 76543210 and e ncio.o;ed in
lmc:kets r l AJso, note thac lhe conLroller supports two drives {drive 0 and drjve I),

even though all UnIDisk 3.5 use a single-drive configuralion (drive 0 only).

UnlDfsk 3.5 lntemal functions 145

UniDis'k 3.5 intemal routines

RdAddr
Find and decode an address field.

Output

R gl ter

Carry 8et on timeout, checksum, or bit-slip error; dear othcrniise.
Sec:tlnfo (S bytes) at $0027 (if carry clear).
On error: $0057lSJ is set, meaning address error.

requ:lrem.eo _ None. A, X, Y are not preserved.

This routine waits for the /READY line to go low and lhen waits for an address field to
spin by. A timeout of almost rwo sector times is allowed. If no address mark is found
during this period, or il the data in the ad~ field has a bad checksum, or if the bil­
sllp bytes are WIOng, che routine returns wilh the carry flag set If the C:1JTY Dag is sel,
then the status byte has the address error bit set. If a good address field was read, its
conlenlS are denibbliz.ed and the resuJts left ln $27-$2B in reverse order from Lhe way
they appear o,n the disk.

ReodDato
Find and load a data field mto RAM.

Output

Reglster

Carry sel lf timeout, checksum, or bit-slip error; dear otherwise.
Data read into buffers at 100, S640, and $740.
On error: $0057[3] sec for bit slip, [4] sel for checksum e:rror.

r equi1'ements None. A, X, Y are not preserved

This routine searches for marks identifying a data fie.Id. This routine is called
immediately after a successful call to Rd.Addr; therefore, lhe timeout is extremely
short (25 bytes). After a data-field mark is found, the next byte is denibbll:zed and
checlccd to see if iL has the correct sector number, and an error is rerumed if jt does
not. If the header is aU righ ~ the data is read, decoded on the Uy, and placed in the
three data buffers .in reverse order. The bjt • .i;lip marks are checked, and an error is
generated if they arc not as expected. lf an error occurs, the sta[US byte $0057 is set lo
indicate lhe type of error encountered

146 Chapter 7: SmartPort Firmware

WrifeDota
Write ruua-sync field, marks, data, bll-siip marks.

Input Data in buffers at $100, $640, and S740: checksum,

Register
r4.!quJrie.m.ents None. A, X, Y are nm preserved

This mutine is called just after Rd.A.ddr has found the correc:t address field H wrHes oul
the data-sync Field, l.he data marks, die nibbliz:ed secror number, t.he daLa., and eta.: biL
slip marks . Al tl:tls point, c:hecksumnililg and pump priming will already have been
performed by the WrilePrep routine.

Seek
T~m rn2wr gn ~rids~~~ m~ s~gfi~ij ~S~·
Input Cyl ($14); n w cyhn<lc..:r ($00- $4F) lo seek.

Drive ($13): drive currently selected.
Cu rCyl (SOD, .$OE); cylinder where each b ·ad initially rc~t.s .

Output Carry set if seek error; clear otherwise.
Cur Sect ($JA): number of sectors this cylinder.
On error: $0057(1] scl for seek error.

Reg1ster
requirements one. A, X, Y are not preserved

If CurCyH7l for I.his drive is set, lhe routine recalibrates the head The momr is rurncd
on, the stepping rurecr.ion is ct, and the correct number of step pul -es is issued.

Format
Write address and data fields (all zeros).

Input Drive ($13} dti vc currently se leded
Form.Side.<i ($63): formal a double-sided disk ($80).

Output

Regi ter

Carry set jf rror; dear othe;wise.
On error: $00SE has SA7 error code:.

requJrcmenls None. A, X, Y are not preserved.

The formatte r turns on the motor and checks whether a write-enabled disk ism rhe
drive. If one is, a sector image is generaled and Wr1teTrk is called_ Then Verify is
ca1Jed1 if ve rific.alion fails, up to 10 retries are auempled If Form.Sides is sel lO double
sided (580) , both heads arc far.maned before lhe head ls Slcpp~<l [D the n xi t:r'd.ck _

UnlDlsk 3.5 Internal routines 147

WrtteTrk.
Seek head and wrirc track run of seaor .

Input

Register

Drive ($13): drive cunently selected.
Cyl ($14); cylinder to format
Side ($16} head number.
FormSides (S63): format a doubfo-sided diSk ($80).
In~deave (562): set physical imedeave.

r quirem.ents None. A, X, Y are not pre erved.

This routine seeks lhe head (if nccccSSa.l)'), writes a large group of sync marks (to
guarantee the eotire lrnck), and then wrii:es the appropriate number of sectors with the
correct interleave_

Verify

Verify ilie integrity of an entire track.

Input

Output

Register

CurNSect ($1A): number of sectors i:.h.is cy1inder.

Carry set if error; dear otherwise.
On error: S0057 bits are set specifying error.

requirements Nona. A, X, Y are not preserved.

This routine uses RdAddr and RcadData to verify lhat aU seaors an the crack are all
right, that sectors are unique and that the data fields can be read without error.

148 Chapter 7: SmartPo:rt Fl rmwore

Vector
Dispatch a command received from the host.

Input CmdTab (S C .. $54): command from SmartPort.

Output StarusTab ($56 .. SSB): set lO $00.
StalHyte ($SE): $80 for no error; error code ocherwise.

Regl ter
requlrements one. A. X, Y are nOl preserved.

This routine looks in the command table, checks ·me validity of the command code
and parameter counti rums on the drive specified, and jumps to the routine that
services the type of command specified. It also sets up the default parameters for lhe
communication routines. If an error is detected In the parameter count or command
code, the status byte is scl :appropriately. The command table looks like this:

CMDTab DFB Command_Code ;O • status, 1 = read, etc.
CMDPCount DFB Parameter_Counl ;Log ical count for this command
CMDRemai.n OS 0, 7 ;Call specific

The contents of the l.ast 7 bytes depend on the call rype. They are the bytes after the
unit number in the Smart.Port comm~nd list

UnlDfsl< 3.5 Internal routines 149

Memory allocation
The firmware does not use pa~e 5 of RAM or lhe lop 64 byt or the z ro page. The CPE
is free to fnscall pale.hes and or.her cod· in S0500- $05FP and $OOC0-$00FF. Figure 7-9
how the entire Unillisk 3.5 memory map as well as firmware Rl\Jv1 pace 'l.15e.

Memory layou I
SFFFF

srnoo RAM lcvout

I
I

Un mple ented I
I

I
I

I
IWM reg sters I

SDAGO I
;, / I

Gate orroy t/O I
soaoo

S0200

50 100

50000 -----
Figure 7·9
UnlDlsk 3.5 memory mop

l SO Chapter 7; SmartPort Firmware

$0800

$0600

$0500

SO.!!OC

$0200

SO JOO

sooco
soooo

Tobie 7.,4
lk11Dlsk 3.5 gate array 1/0 locations

Functton data A da1a.J

Read 5800 LAS TO E/ BU SEN/
\l1rt $800 TRIGGER ENBUS
Read $801 SENSE BLATCHl
Wrt $801 ;nsnwM /BLATCH

CL.Rt

Table 7-5
lk11Disk 3 .5 IWM locations.

loc:oHon Spaiclflc k:ibtil

$0AOO PHASEO reset
SOAOl PHASEO set
$0A02 PfL\SEl reset
SOA03 PHASE! set
$0A04 PHASE2 reset
SOA05 PHASE2 set
SOA06 PHASE3· reset
SOA07 PHASE3 er
$0A08 MOTOROFP
SOA09 MOTORON
~OAOA ENABLE I
~t'I A AD "'"' 'DIL~

SOAOC L6 res.et
$0AOD I.6 set
$0AOE L7 resel
SOAOF 17set

data2 datal data Cl

WRREQ /GATENBL HDSEL
HDSEL
CAO
DRIVE2

PH3EN IWMDlR
BLA'fCli2 DRONEN
/BLA TCH DRIVEl
CLR2

lWMDI R = 0 (dlV) IWMDIR • 1 {host)

CAO reset /BSY handshake
CAO set /BSY handshake
CAl reset
CAl set
CA2 reset
CA2 set
LSTRB reseL
LSTRB SC[

Memory allocation 151

ROM disk driver
The ROM disk is a plug-.in card that houses ROM that may be o:rgani7,,ed into blocks to
emul:ue a disk device or provide space ror ROM-based programs. All:hough l:he
SmartPort has no built-in ROM disk, Smart.Port does support an external ROM disk
driver.

Installing a ROM disk driver
The driver for a ROM disk must reside at address $F0/0000. The ROM disk may oca.Jpy
only the add.res. spare from $F0/0000 through $1'7/FFFF. The base addre.-;s of the
dr.iver must contain the ASCH s1.ring ROMDISK [n uppercase letters with l:he most
ignifica.nt bit on. Entry to the ROM disk driver is lhrough address $F0/0007. The

SmartPort firmware will search for a ROM di k dri\ter du.ring the boot prooess while
assigning unit numbers to each of the Sma.rtPorl devices. If the Smart.Port finds th
ASCII st.ring ROMDISK al address $F0/0007, Ll execuJcs an InltiaJization call lO the
ROM disk driver via the ROM disk entry poinl If the ROM disk ret\lms wilh no error,
the ROM disk driver is installed in lhe SmartPort device ch'lin If the ROM disk
Initiali.zatlon c:all returns an error, lhe ROM disk driver is not in.stall d in the SmartPort
devke chain. ote lhat the ROM disk driver is called via. a J L instruction in 8-bit
native mode.

Passing parameters to a R.OM disk

Call parameters are passed lo ilie ROM di! k from lhe SmartPon through fixed memory
locations in absolule 2ero page. All inpul to dcvke-specific drivers is passed in an
extended format, even for standard SmartPort ca Us, so thal the call p:i rametcrs can
always be found in fixed locnions. Noce that standard calls arc not changed into
exrendcd calls; oa]y parameter organization is affected.

Some parameters do not ocrupy contiguous memory when they are presented in an
extended format because che order of parameters has been prepared o the
parameters can be transmiued over the SmartPort bu.o;, to intelligent devices. Absolute
zero page locations $40 to 62 arc saved by l:he Smart.Port prior to their dispatch to I.he
ROM dlsk and are restored by the SmartPon after their return from the driver. Thus,
these locations are available for use by the ROM disk driver.

152 Chapter 7: SmortPort !Firmware

CJU parameters are passed to the ROM disk driver as foUows:

lCK:allon Po rci m~to1~ CaH type

542 Buffer address (bits 0 lo 7J All
$45 Buffer address (bits 8 lo 15) All
$44 Huffer address (bits 16 lO 23) All
$45 Command All
$46 Para.meter counl All
S47 Buffer address CbilS 24 to 31) All
$48 Extended block (bjL"; 0 LO 7) Rea:dBlock and WriLeBlock

Status code or control code .StahlS and Control
Byte c:ounl OJj[S 0 (0 7) Read and Write

H9 Extended block (hits 8 to 15) ReadBl1;11;;k and WriteRlock
Byte count (bi~ 8 to 1 5) Read and \Vrite

S4A Exlendcd hlock (birs 16 co 23) ReadBlock <1nd WriteBlock
ddress poimer (bits 0 to 7) Read and Write

HB Excended block Cbirs 24 to 3D ReadBlock and WriteBlock
Address pointer (bits 8 lo 15) Read and Wrile

.S4C Address pointer (bits 16 to 23) Read and Write
$1D Address pnln1er CbiL.'l 24 lo 31) Read and Wrjre

Parameters returned to Lhe appHcation from the ROM disk driver are passed in

ibsolulc zero page locations as follows:

Loectlon

S.000050
S000051
S000052

Output parameter passed

Error code
Low byte of count of bytes Lransferred lo host
High byte of counL of bytes transferred lo hosl

All 1/0 information passed between lhe application making the Srn.artPorl call and the
ROM disk driver is passed through lhe buffer 5pecified in lhe parameter Jtst.

ROM disk driver 153

ROM organization
ROM for a ROM rusk mu.st contain the ROM disk signature string as weU as a ROM disk
driver. A map of !:he ROM address space when portions of ROM are orga.ni7:e d as
blocks is shown in Figure 7- 0 .

SFn/XXXX+l
SFn/XXXX

$F00007
SFOOOOO

•
•
•

flg;w a· 7- 1 0
The ROM disk

ROM dlslc b loc ks

ROM disk driver

ACSll strln~ 'ROMDISK'

154 Chapter 7: SmartPort Firmware

•
•
•

l block diagram of a ROM disk lha.t ocrupies 12BK o.f ROM (including the driver itselQ
i shown in Figure 7- 11. Note that no ROM spare has been reseived for toolseL
xpansion i.n chis example.

lOM ban boundory -------------,

F I Block SF~
Block SFD
Bloc SFC

• •
• •
• •

Block. $83
Block SB2
Block $61
Block $80
Blocic S7F

ROM bank boundary -------r
1

................................ ~__, Bloci.t $7E
,_ _______ _____, Block $7D
...._______ ruoc1e S7C

To1a1 numl:Hlr of bloc s '" ~OM stze
•
•
"

•
•
•

Block Sl3
ii--------! Ellock S12

Bloc Sl l i1--------;1 Bloc S 10
Block SOF -------1 Block SOE
Bloc SOD 1--------1 Block SOC
Block SOB -------1 Block SOA
Block S09

1--------1 Block SOS
Block $:07 ------1 ruock S06
Slock $05

1--------1 Block S04
Block $03 1--------1 Bloc S02

1--------1 Block $0l
Block $00

Driver In basB 5 n byte block ---­
or ROM bonk SFO

flg11re 7·11
Block: diagram of a l 28 K ROM disk

ROM cisk driver

Signature bytes

Device ~lze (11umber of blocl<.s)

!<OM d Isl< driver 155

Summary of SmartPod ,error c,od,es
SmartPon error codes are summarized in Table 7-6.

J,able 7-6
SmortPoit error cod es

Ace valu• Error type

SOO No er:ror

$01 BADCMD

$04 BADPCNT

$06 BUSERR

$11 BAD UNIT

$1F OINT

$2 BADCTL

S22 BADCTLPARM

S.27 IOERROR

$28 NODR1VE

$2B OWRITE

$20 BAD BLOCK

$2E DlSKSW

$2F OFFLINE

$30~$3F DEVSPEC

$40-$4P RESERVED

$50- $SF NONFATAL

~60-$6F NONPATAL

Dtncrlplion

No error ocrurred.

A nonexistent command was issued.

A ba.d can paramelcr count was given. This error
occur only when lhe caU parameter list is nOL
properly corutructed.

A communications error occurred in the IWM.

An invaUd urut number was given.

Interru pl devices are not supported

The control or s[;aUJS code .Is nor uppon:ed by lhe
device.

"The c.ontroJ list contains invaJid information.

The device encountered an VO error.

The device is nol connected. This error can ocrur if
lhe device is noL connecled but ilS coneroller is.

The device is write protected.

TI1e block number is nol present on the device.

Media has been swapped (~ended c.a.Jls only).

n1c devioe is olI line or no disk is in drive.

These are device-specific e.rror codes.

Reserved for future use.

A dev ·ce-spedfk soft ,error occurred The operation
was completed su ccessfuUy, bul an abnormal
condition was decected.

These error are lhe same as the errors in the $20--$2.F
range. Bit 6 indicates a soft error.

156 Chapter 7; SmortPort Firmware

The Smarf Port bus
The SmartPort bus is a daisy chain configuration of imcUigcnt devices, sometimes
called bus residents, connected ro the disk port of the hosl CPU. A Di ·k 11 devic may
be physically connected to the end of the SmanPort device chain on the Apple IIGS,
and its operation will be uansparent to I.he hast fl.rm ware. The Disk H device is
dormant when a SmartPort bus resident fa addressed. 11le number of bus residentS th:u
on be supported is limited by supply-power and TWM-drive considerations. Although
lhe soft.ware supports up to 127 bus residents, power requirements usually limil the
maximum number of residents to 4.

Drive selection ls performed through the firmware. The command tring contains a
byte specifyin the device ro accessed. These devjce ID bytes are assigned by the
SmanPort ar bu reset

Two functioM are strjctly hardware invoked: bus resel and bu enable. Both or chese
mnrfi1inn<: .,,..,,. invnl<Prl Thmnpli rnmhiMflnn5_nf rih.::11;(' 1;nP rn thP ,.,i ... k Wli 1ti::11
never occur under normal Da.sk 1l operation lHolh func:Ilon.s involve invoking
opposing phases, which is poinr.I on a Dtsk Il.) 'Th1s allows a Disk lI device and other
bus re ·idents to slay oul o.l' each other's way. 'llle bus reset and enable function.o; arc
rummarized below.

Fune Hon

Enable
Reset

PH3

1
0

PH2

x
1

PH1

1
0

PHO

x
I

The state of the PHO line during the enable function can be either a 1 or a 0 because
PHO is usc<l as a REQ handshake line cycled on a packet basis when the bus is enabled­
ACK is ensed from lhe device through the IWM wrlcc-protccl sense status.

How SmartPort asstgns unit numbers

The assignment of unit numbers is initiated by exernting a call to the slot 5 boor entry
poinL ihis assignment always begins with a bus reset. The reseL flips a latch on all u
residents, which causes the daisy-chained phase 3 line (O becom low This makes all
daisy-chained devices incapable of receiving the bus enable ignal, which requires
phase 3 to be high.

The host chcn sends the ID dcfinit!on command, Whenever a device receives this
command (with Enable), it assigns I.he unit number embedded in the command string
as ics own unit number. Thereafter it will not respond LO any command suing with a
unil number other lhan that given it in the ID definition command.

Tne SmartPort bus 157

Upon completing the m definflion command, the bus resident reenables I.he phase 3
tine, aUowing the oexl resident to receive its ID dcfiniUon command Thi process
continues so Jong aJ ch.ere are bus rcsidcncs. The 1ast bu resid nt in lhe device chain
r lums an exception, indicating thal it is !he last bus resident.

Although Disk n devcces are connecced to lhe disk port, I.hey a.re not bus .resjdenl.'i and
do not respond lo 1.he ID definition command. A resident determines that i1 is the last
inieUigent device in lhc chain by sensing a igna!, normally unused Ln Disk II
operations, which i grounded by all inlelligenl dcvic..e-. Jf no bus re idem or Disk IT
device is daisy chained to the port, lhe phase 3 line is read as high.

SmartPort-Disk U Interaction

Th di k port built into lhe pple IIGS suppom daisy-chained 5.25-inch disks CUniDisk
5.25, Disk II, or DuoDisk) by sharing the same di.5k port hardwar,e between two
different ROM loc areas, The sloe S HOM area c:oncains I.he martPon interface and
ProDOS block device driver, and the lot 6 ROM area contains the Di: k Il interface.
The Disk U device is enabled by the disk pnrr ignal / ENA.BLE2, The SmartPon must
acllvate lhe /ENABL .2 line to commu nic::ne with intelljgent bus re.sfd ru.s. If this Line
were not intercepted before beine passed to daisy-chain d devices, any tt mpt to taJk
to devices on the bus would result in spurim.is operation of lhe Disk n a the end or I.he
chain.

f'or the Disk n to remain aloof from Sma.rtPort ac~ivity, e.adt resident must gace Lhe
/ENABLE2 line so th t whenever any SmanPort. bus re ident i:S enabled (PHASE1 and
PHASE3), any Disk n at the end or the chain i disabled. In other words, the
/ ENABI.E2 l.ine i passed to daisy-chained devices only when either PHASEl or
PI lASE3 is low:

BIJS ENABLE (PH 11 end PHJ)

PHASEl=O or PI-IASE3=0
PHASEl • l and PHA E3"'1

Other con,sidero'lions

/£NABl.E2 Cda!s.y chained)

/ENABLE2
Deasserted (high)

All intelligent residents try 10 process every command packcc sent over the bus; a
resident responding only ir il recognizes its own ID, lype, and subtype encoded in tile
packet. The device type and command ~ue used by lhe device lo arbjtrate bei:ween
extended and standard packets_ Thus, one rc.sidenl can tell when some ocher residem
is being accessed or if the packet cype (extended or tandarcl) i. compatible wich Lhe
device . A devjcc controller can therefore reduce its power consumption when iL is not
being constantly accessed.

158 Chapter 7: SmartPort Armwore

Extended and standard command packets
The number of by1.e3 paMed over the SmartPort bus in a sLandar-d corn.mand packet is
lhe ~ as the n.umbcr coolained in an ex:lerided command packeL Standard
SmartPort command parameter llslS can consist of up w 9 bytes. Exlended SrnartPort
command parameter lists can consist of up to 11 bytes. The command packet was
designed for a maximum of 9 bytes or information. The first 2 bytes al"W"ays contain the
SmutPort command number and parameter count The remafnfng 7 bytes consist of 7
byteS of lhe parameter list startiQS with lhe I.hi rd byte for standard commands or the
flflh byte for extended commands; 7 bytes from the parameter !isl always a.re copied
into the command packet, ,even though the parameter lisL for c.he current command
may consist of fewer than 7 bytes.

SmortPort bus flow of operations
fhe general llow of control in the SmarLPort is mu.mated [n rfgure 7-12.

ProDOS lntartace

~ccke management

SmortPort lnta face

Figure 7· 12
SmcrtPort control f low

Whenever a call is made to the SmartPort device driver 'LhaL u es lh Smarl.Port bus,
the command table sem to the device driver Lo; converted into a command packrd
before being senit. to the device. The results of I.he call are also senL back rro m I.he
device in a packl!L All data sent over the bus is placed in lhese packers.

<" lllote: f.acb byte of the packet is a 7-bit quantity (bil 7 is alway· s.er), a lirnlr:ation
imposed by the IWM. AU dacai sent is converted from 8-bit quantities to 7-biL
quantities before transmission.

The information of the packet can be broken down into the following cal ~gorie.~:

D general over head

:::i source and dtstination IDs

'J contents rype and auxiliary (aux) type

o contents status

o comcms

The Smar Po bus 159

11Ie identifiers arc 7-bft quantities assigned scquenlially according Lo the device's
position [n lhe cha.in_ The ho cf always ID• O. Becaus every byte in the packec has the
most significant bi sel, the host is $80, !he firSl device in the cha.jn is $81, and ·o on.

The contents type consJ LS of a type and aux type byte, Three contents types arc
curr nlly defined: Type = $80 is a command packel, type = $81 i a 1.atus packet, and
cype = .$82 i. a data packet Bit-6 is the command byte, and the aux cype byte de.fines
the packet as either extended or standard, Aux 1..ype = $80 indicates a standard pa kel,
antl $CO indicates an extended packet Comm nd = $8X indicate a standard packet.,
and sex indicates an extended packet

The onrenrs byte is used for statu. and data packets. lt contai:ru che error code for l'.\ead
and wrH operalions. The martPort 11Cturos Lh contenl.5 byte as an rror code for the
call .

The contcms itself consists of bytes of 7 bi1B (high bfl set) of encoded data _ Pr ceding
lhe bytes the mseJves a:rc two length bytes If the number nf comenl bytes is
BYTECOUt\'T, Lhen the Hrsl byte is d fined a - BYTECOUNT DIV 7, and the econd
byte is defined as BYTECOUNT MOD 7. ln other words, !he firs1. byte specifics the
number of groups of 7 bytes of content., and the second is lh remainder. Nme that the
econd byte will. never hav a value greater than 6. Bolh lhese bytes have their mos

significant bil set.

The gen ral overhead bytes are packet begin and end marks, sync byt.eS (6, Lo ensure
correct sym:hronJzaLion of the IWMs), and d1ecksum. The checksum is compuled by
exclusive ORing all the conten data bytes (8 bilS) and the IDs, type bytes, stal.U bytes,
and length bytes. The checksum Is 8 bit.l sem as 16.

Figure 7-13 demonstrates the scqu nee of 5ignal transitions ~hat define the protocol
for executing a read from a device. The signal transition points are de cribed below.

l - Ho 'l a,sserts REQ when ACK is negated; command packet is coming from host
2. Host enables JWM and sends packet to device.

3 Device dcasscn:s ACK, signaling host lhat packet was received.
4 . I Iost respond') by deasserting REQ.

5. Device asserts ACK when it is p·.i.dy to send response packet to host.

6 _ Host sserts REQ when it is ready to receive response packet from device.
7 _ Device enables IWM and sends respon.o;e packet to host.

8. Device de.a:ssens ACK al end of packet

9. Host deas.serts REQ when packet is received.

10. Device asserts ACK to indicate it is ready LO receive a command.

160 Chapter 7: SmartPort Ffrmware

REQ

ACK G?--~
Drl\le M

HostlWM ~--------~L ---~
DrN& cata _____ °'4~
Host dota

Figure· 7-13
SmortPort bus comm unlcafions : read pro ocol

f igure 7-14 demonstrates lhc sequence of signal tran.">!c:ions r.ha.t define 1.he pruincol
for executing a write lo a device. The signal tran.~itlon points are described l clow.

1. Hosl asserts REQ when AC.JC is negated and command packet Is oming from ho.st.

2 _ Command packet is sent..

3. Device asser\3 ACK, slg.nali11,g i£ received the packet

4. Hooe negates ACK, finishlng the command handshake.

S. When REQ Is negated and d vice is ready w receive dala, device negates ACK.

6. When ACK is 11egated and host is ready to send., host asserts REQ.

7. H osl sends write dJ la .

8. Device asserts ACK 1 signaling lt rcc:ei v d lh REQ.

9. Host ncgale-s REQ, aJJowing devrce ta write data to its media.

The Sma tPort bus 161

10. Device negate ACK and writes data to its media.

11. Host responds to negated ACK by asseni.ng REQ, signaling it is ready for stacus.

12. Device responds to REQ by sending S:latus to h~i:.

13. Device ~rts ACK, signaling status has been en:t.

14. Ho. t acknowledges receipt of stall.ls by neg:1ting REQ.

15. Device negares ACK when jt is ready for the next command

REQ

ACK

Drive IWM

Hos IWM _J LJ

Dm1a do a

Host do a

Figure 7-14
Smor Po bus communications: v.rri e protocol

Egure 7-15 illustrates that a command packet contains as few as zero and as many as
767 data bytes. Each packet of 7 data bytes .is encoded in a specific manner, described
below, to assure chat each dal:l byte Lhat ts part of the packet has IL'i mosl significant bit

CL To anow all possible bit combination to be Lransmitted rn Lhis manner, Ic is
necessary ro traru rnll 8 data bytes of encoded i.nforrnar.ion for every 7 bytes of data. If
th re is no an even multiple of 7 byte in the total data block m be sent, chen lhe
remaining 0 to 6 data bytes are encoded and sent. preceding the packets of 7 encoded
bytes, as 2 to 7 data bytes as described below.

162 Chapter 7: SmartPort Firmware

I $C3 ,]

I 2 I
I JI

I 41

I s [

I 61

I 71

! e I

I I
I 1 c~ 1 ~ 1 c2 1 co I
I 1 c 7 l c5 1 c3 1 cl I

sea

Figure 7· 15

Destlno11on ID (S&l- SFE)

rHost ID always = S80.

Source ID ($80-SFE)

first de\lfce In ct'loln "" $81.
secol'\d device I chaJn "' S 82 ..

Pac e type (S80- Commond pocke)
($81 -Status packe)
($82- Da a packet)

AUX. typa ($Ml)

Date status byte (7 b sJ ($80-SFF)

Length or packe contents ·ocid· bytes ($80- $86)

Length o pa c el con ants groups of 7 data byt€1S (S !lO-SED>

Packet contents
Groups of 7 data bytes written os 8;

ost slgnl vcont bl s all In first byte

Chacksu (8-blt XOR or paclce date
and bytes 1-8 above) sen FM;
e11ary other bit - I

Pocket end mar

SmortPort bus·packet foITT1at

The SmartPort bus 163

For e.>.Ch group of 7 da~ bytes in l:he block to be senL, Lake I.he bits of whicll lhooe bytes
arc composed and rearrange 1.hem as shown in figure 7-16. This changes lhe 7 bytes of
input data inro 8 bytes of encoded data, In which each oucput data byte has iis most
significant bit set.

Oddgmupo
0-6 oa a bytes
(2-7 bytes sent)

Figure 7-1 6

Group or
7 data bvtes
ca b ytas sen I)

Gmup of
7 data bvtes • ,. •
CB bytes sent)

Poe et Si!Zes rcnga l'rom Oto 767 da a bytes.

SmartPort bus packet con ents

Group of
7 data b yt,es
(8 bytes sent)

As Table 7-7 shows, I.he first byte contains lhe mo t significant bit of each of I.he 7 data
bytes, the second byie contains the seven leas significant bjts of che firsL data byte, the
third byte contains the seven I ·a:;t significant bilS of the !.hird data byte, and so on for a
t.otal of 8 bytes of encoded data. 1his data is transmitted wi.th the byte com:aining the
most significant bits first, followed by each of the olhcr 7 ncoded da ca by[es In 11.lrn,
Thus, you c.an see that if (here are fewer than 7 da ta bytes in an. odd group, fewer than 8
bytes of encoded data wi.11 be required to transmit t.hi o<ld group.

Tab le 7-7
Data byte encoding table

Top bits byte d17 d27 d37 d47 dS7 d67 d77
Byfe 1 dJ6 dl5 d l 4 d13 dl2 dl1 d10
Byte 2 d26 d25 d24 d23 d22 d21 d2o
Byte 3 d36 d35 d34 d33 d32 d31 d.3-o
Bytlil 4 d46 d45 d44 d4} d42 d4, d40
Byte S d56 d55 d5.i d53 d52 d51 d50
Byte 6 d66 d65 d64 d6 d62 d61 d60
Byte 7 d76 d75 d74 d73 d72 d71 d70

The number of bytes in the odd group .is the remainder of !he number of data bytes in
the packet divided by 7. When encoding the odd byces, assume lhac che rest of the data
bytes making up a group of 7 bytes all contain 7..cros. Also note that if there are no odd
bytes (lhal is, if the packet size divides by 7 evenly with no remainder), the odd-bytes
group is. simply omiued. Similarly, if Lhe number of byi:.es in the packet is less chan 7,
there wiJI be no encoded packeLS of 7 byres, but only an odd-by1es group will be sent

164 Chapter 7: SmartPort Firmware

For example, if you are sending a 512-byte packel, che number or groups of 7 byies is
73, wilh a remainder of 1. Therefore, chc first data byte wilJ be sent as an odd group,
followed by 73 groups of 7 bytes earn. The groups of 7 bytes will be encoded as
indicated above and lhe odd byles (byte number 1 of rhe packcE, data bjlS 7..0) will be
sem as shown in Figure 7-17.

dl tih1..0 d2 · i7 .. 0 d3 bit! 7 D d4bllJ1 0 d5 blt'i7 0 d6 bllt1 C d1bltl7 .. 0

Figure 7~17
Sit layout of o 7-byte data packet

1 Op bits byt 0 1 dl 7 0 0 I a 0 0 0

Byte 1
I

l dl6 dl s dl4 dl 3 dl2 dl, dl D

Rgure 7- 18
l ransml ng a 1-byte data pocket

Nrne Lh.at the top bits for data bytes 2 through 7 in lhis ex.ample are SCI m zero, and the
data bytes LhaL would have conta.ined the least significant data bits of bytes 2 !hmugh 7
a.re not transmiued. This is simply a special case of an instance of a group of 7 byies.

Table 7-8 and 7·9 provide a visual summary of the contents of me tandard and
extended command packets. Where there is an asterisk in the table, the vaJuc of the
oorresponding byte position is undcftned and should be ignored by the device.

111e SmortPort bus 165

Table 7·8
Standard commend poc ket contents

Byle Sf,c:i tu s lea dB lock Write B lo clc Format C o ntro l 'nit Open Close l!'eod WrUe·

I 0.0 01 $02 $03 $0 sos $06 07 sos $09
2 Pa ram Param Param Pa ram Pa.ram Pa ram Par m Pa ram Pa ram P11111m

count count count ounl count C Ual count count count co um
3 Byte ~ B;1e 3 Rytc 3 Byte 3 Byte 3 Byte 3 B le 3 Byte 3

of 0 of 0 of of of of
pa ram par am pa ram pa ram p:iram pa ram pa ram param
list I l.ist JiSI llsl: list list list
Byte 4 Byte 4 Byte 4 Byte 4 Byte 4 Byte Byt Byte 4
of of of of of of of of
pa.ram pairam pa ram param param pa ram pa ram pa ram
]isl list list llst list list list list

5 Byte 5 Byt 5 Byte 5 Byw 5
or of of of
pram param pa ram par.i.m
list list list Ii.st

6 Byte 6 Byte 6 Byte 6 Byte 6
of of 0 of
par am pa ram par.im par am
llM list list list

7 Byte 7 Byte 7 Byte Byte 7
of of of of
param param pa ram param
list list list list

8 Byte 8 Byte 8
of of
panim puam
I isl llst

9 Byte 9 Byte 9
of of
param pa ram
list list

• A byte with an indeterminate value; the device shoufd ignor the byte .

166 Chapter 7: SmortPort Flrmwore

Table 7~9
Extended command packet contents

lyle Status RaaaBroc:k Wr~tel!ock Format Control ll'lit Open Close Read Wr1te

$40 $11 H2 S43 i44 SH $46 $47 $ R 49

2 Param Par:;im P.11ram Pa ram Pa.ram Par am Param Pararn Par.om Pa ram
count coun.t count COUil count count count co um count count

3 Byte 5 Byte 5 Byte 5 • Byte S Byte S Byte 5 Byte 5 Byte S
of of of of of of of of
para.in p.1.rnm param par am param param par.irn pa.r:101
list. list list list llst list Ii& Ii.st

Byte 6 Byte 6 Byte 6 Byte 6 .. Byte 6 Byte 6 Byte 6 Byte 6
of of of of of of of or
pa.ram param pa.ram pa ram par am param par m pa ram
I isl l ist list list list list. list list

s Byte 7 Byte 7 Byte 7 Byte 7
of of of or
pa.ram pa ram ~mm p:1r m
ltst list list list

6 Byte 8 B;'1.e 8 Byte 8 Byte 8
of of of of
param pa:ram p;ilrarn p.aram
list; list list list

7 Byte 9 Byte 9 Byte 9 Byte 9
of of of of
pa ram pa.ram par am pa ram
list list Ii& list

8 • Byte 10 Byte 10
of or
pa ram pa~rn

H.st liSl

9 Byte 11 Byte 11
or 0
par am par am
Hst li:s.t

•A byte wilh an indetermlnalc value; Lhc device should ignore the byte.

The SrnartPort bus 16 7

Chapter 8

I nte1rrupt-H and ler
Fumware

169

This chapter describes how the Apple UG5 handles interrupts from the avail.able
Interrupt sources. You can find addiliona] Information about interrupt.'5 in
Appendix D, ~vectors." This cmpter describes interrupcs In general an<l the
Apple llGS buill-in interrupt-handler f.irmware in particular and how to manage
environment variables during inlerrupt handling. h also .summarizes all interrupt
uurces, discussing how often each source interrupts the sy.o;tem and lhe relative

priority assigned by t.hc syslCnl lo each source, and pruvides some details aboul Break
mstruclions, Lhe AppleMau.se't.i, and scrhl-port Lntcrrupt handling.

As a user's program runs, it may get interrupted by varjowi sources lO process
imponant external inpucs. The system assigns priorities lo each of these interrup~
sources and handles chem in a defined sequence. \l:'hen the user's program is
in(crrupced, the Slate of the sysLem ac the lime of the imerrupt i.s saved. On completion
of interrupt processing, lhc program can continue as though nothing had happened.

There are many reasons for lhe system lO inLcrrupt the execution of a program. For
ex.ample, If !he user moves me mouse, the system should read lhe mouse location to
keep che pointer location current ff the system handles the i.nlelrupt promptly, the
mouse poinre.r's movement on lhe screen will be smooth instead of jerky and uneven.
Or your program may be performing :1n0Lher operation while charaCLe.rs are being
received in a seria1 inpuc buffer, and you do nm want lO lose any ch.aracter.s from the
ln.pul stream These conditions, and ma.ny olhcrs, c:an cause your program lo be
interrup1ed to handle an error or some other special cond.ilion lhat rc(1uirc:s
immediate attention.

The Apple 11G5 interrupt-handkr fi.rmware supports interrupts in any memory
configuration. To do UllS, the system sa\'e5 the machine's SI.ate ai me time of the
interrupt, placing the Apple IlGS in a 5landard memory coniiguration before calling
you.r prngram's interrupt handler, and then restores 1:he original sure when 'four
program's interrupt handler i~ finished.

If you write your own jnterrup[·proccs:;ing roulines, you can allach them to lhe system
by modifying lhe imerrupt vector locations s.pecifieJ in Appendix D, •vecmr·."
However, you must obey aU of the conventions s_pedfied in this chapter regarding
incerrupl processing and make sure [0 restore me environment W the Slate in which
you found It on entry lo your inlerrupL-procc.ssing routine. Titls wiU allow the system to
restore the environment LO Its original srn~e.

170 Chapter 8: Interrupt-Handler Firmware

What is an interrupt?
An interru pl is mosl often ca.used by an external. sjgn.a.] thal tells lhc computer to stop
what il Ls currenlly doing and devote its altentioa w a more jmportant task. Be.1ades
Uti.s external hardware-related signal, SQflware incerrupl.ll are possible as well.

Hardware inlenupE priorities are established Lhrougb a daisy-chain arrnngemenl using
two pln.s, INT IN and rNT OUT, on each peripheral-card slot. Each peripheral card
breaks lhe chain when jt issues an interrupt requcsL On pcriphemJ cards tha.c don't use
inc.emipLS, c:he designer of the peripheral card should connect these pins lO one
mother, thereby passing the inlerru pl .signal directly through me caJd foL

1l1i~H: !:fie: lnIBffilpf ~tiqmrt (lftQ) Uni! BB ffi@: Ap.ple neg micropracgsar is iiciiwietl
or when a software interrupt occurs, lhe m.icroproccs.sor tran.~fcrs control co the
im.e:rrupl-processing routines by jumping l.hrough vectors stored in ROM. The built-in
interrupt handler processes the intcmi pt if the application has not provided ics vwn
inierrupl handler.

What Is an Interrupt? 171

The built-in interrupt handler
TI1c Apple IlGS built-In interrupt handler performs a sequence of steps to handle
system interrupts. Figure 8- l show the slructure of the built-in intem.ipt handler.

EABO~T

NABORT

65C816
interrupt ECOP
vectors .-.. __ ..-
(Bonk s Ff) 1-N_l...;.R_Q ___ _,

IRQBRK

JSL AoplaTclk
JSL serlol In arrup~

JSL SrcXX ..,. _ _...-!

JSl Stcvv ... _ ,.,__.
JSL SrcZZ (and so on) ... ---t

JSL otner ..,. __ _.

Figure 8- 1
Built-In Interrupt handler

SC071-SC07F

Enrer
rilonltot

Pol all
o her
$0UfC9i

(SJH)
Bonk $00

No

172 Chapter 8: Interrupt-Hendler Firmware

Boni!: SEI
vector

Bonk SEI
vaclor

Yes

Simulate
a Break

Sreok handler I

(S3FO)
Sank $00

Switch
to
Mlgh
speed

Ren ore
irate

Exrt
Interrupt

If VO shadowing is on, then the system ROM in bank $FP js shadowed (and readable)
in bank 00. The system jumps indirectly through the inLerrupt vector located either al

EIRQ ($fFTh, $FFFF) iJ il was running in cmu1ation made when the interrupt occurred
or at NYRQ (FPE4, $FFE5) if iL was running in native mode.

Important

If 1/0 shadowing~ off. RAM wlll bs addressed In the memory space of banlit SOO in
Iha area of SFfEO-SFFFF. he locoflon at which the· lnterrup vectors are s or&d.
When an Interrupt occurs. the 65C816 us.es the Interrupt vector loca ed In the
RAM vec or able If 1/0 shadowing Is off and uses the vector located ln he ROM
vector table If 1/0 shadowing is on. If you have not correctly set up the RAM
vectors and you tum oft 1/0 shadowing. the system wm foll.

Bolh EIRQ and NIRQ jump to RO 1 locatcd wilhin I.he sofr.swjtch area at
SC071t-$C07F. This special ROM code sers statu fiags that identify the type of interrupt
thal h s ju.st occurred.

At th.is point, the system lCSts 10 see whether the interrupt was a result of a ofrvv:aiie
Break insuuction. If it was, the system vectors to the break handler (normally the
syscem Monitor) through the user interrupt-handler vector in bank SEl. An
a.ppllcation v.ill parch this vector only if i£ wants to be respon.sfble for handling or lO be
informed about all interrupts that occur. If chc application ·imply wants information,
it must save the veclOr vatue that lhe application finds in chis location and then jump
through th.is vector as the user-interrupt code is comp1eted. Saving and using the
vector allows the sy. tern to proceed as though the application had never gotten in che
way in the first piaoe. Jf Lhe application wants to handle all interrupt processing on its
own, it must be re ponsiblc for restoring any environment variables that it changc.s
and must execute an RTI instructlon directl;r from Ics own code, returning to the
application that was inrierrupted.

If th· iruerrupl source was .not a Break insLrUc:.tion, the interrupt handler saves chc
absolute minimum amount of information abouL the machine stale. The interrupt
source might have been AppleTa.lk (tesled fi.rsl) or the serial porr (tested nexl). If you
are running al high baud rates and if interrupt processing takes too long, you m..ighir.
begin to miss characters. To save I.he minimum madi.i.ne state, save only the
environment variables that have w be used tn the routlne that sa es an incoming serial
character in a buffer and poincs the buffer pointer to ils next location. To see whether
the interrupt wa.s from a serial port, the sec is tested. If ft is a serial lmerrupt, the
firmware performs a JSL insuuction through a patch address jn bank SEl to the pon
handler (sec Appendix D, "Vectors,• for more information).

The bull -In Interrupt handler 173

If the port handler rerums wilh lhe carry bil sel, I.he system does nol have an internal.
serial-port handler installed. The inlerrupt handler now proceeds w save the rest of
ihc machine :;cue and es{ablish a specific interrupt memoiy configuration as
de.scribed in lhe section dSaving lhe Current Environment~ l3ter in this chaplet. (You
musL potl each of lhe possfble inlemlpt sources m determine which requires service.)

AL I.his point, the inccrrupt system begins a pomng loop, testing each of lhe possible
interrupt sources in rurn. If no internal interrupt handler i.'5 installed, then (and only
then) the firmware [umps through Lh user intcrrupl vector routine to handle the
inlcrrupL The address of the user imerrupt rouline is found in bank $00, addresse.;
53PF. (low byte) and S3FF (high byl!!).

The $3FE inrnrrupt handh~r (u.ser interrupt vector routine) must do Lhe following:

[' verlfy lhal the Interrupl came from r.he expected source

r handle I.he [nlerrupl appropriarnly

o clear the appropriate irne.rrup\ sort switch

o restore everything to the .suite il was in when Lhe Inrerrupt Request ram.inn was
cnlcrcd, if your rout.inc has made any d1angcs ta the stale of the machine

o return to lhc built-in inlcrrupl handler by executing an RTI instruction

Aflcr the user interrupt vector routine completes .its action, the buill-in interrupt
handler rcslores lhe memory configur.nion and then exec:ules anal.her RTI lo return w
where it was when the inwrrupt oco.mcd_

Herc arc some faders ca rcmcmbc.r when you are dealing wilh programs mat run m an
inter ru pl environment:

o There is no guaranteed maximum response Lime for interrupts because the system
may be performing a disk operalion that lasl.5 for several seconds when I.he inlerrupL
oc:ru rs.

n lnterrupl overhead will be greater iF yom interrupL handler is in.sLaHed through an
operating sy5tem'.s interrupl dispatcher. The length of delay depend.!5 on Lhe
opcrat..ing system and on whether lhc. upcracing sy.stcrn dispat.ch.e I.he interrupt to

mhcr routines before calling you.rs.

174 Chapter 8: lnte-rrupt-Handlar Firmware

Summary of system interrupts
Table 8-1 lists the source and type or each .in~ rupl and describes e;;i.ch one.

Table 8·1
Summary of system Interrupts

Power up RESET

Resel key RESET

Exlcrnal card RESET

Exlernal card NM I

Abort signal ABORT

COP instruction COP I natl ve

COP COP/emulation

Ilreak Instmction BRK/ native

Break BRK/ emu1alian

AppleTalk IRQ

Serial input #l IRQ
(SCC channel A)

Serial inpu l 1112 IRQ
(SCC channel B)

Scan line IRQ

Deso rlptlon

Generated by powering up Apple llGS.

Gen rated by the ADB m.icmcontmller when
Control-ReseL is pressed.

vaUab]e.

Used only ror debugging.

Activated by memory card la .

In nalive mode, Lh.e user executed a COP
instruction.

In emulation mode, the user executed a COP
in~tmr;th;.m ,

In natlve mode, che u er executed a Break
(BRK) ins~ruction.

In emulallon mode, the user exeruted a Break
(BRK) instruction .

Intenupcs upon address recognUion or an
error.

InterrupL'> when lransmitter is empty,
transmission is received, or an error
occurs_

Same as serial input #1.

fnterrupts a[end of requesled scan lines.

(c ontln Lied)

Summary of sys em Interrupts l 75

table 1-1
Summary of system lnte:rn.1pts (conttnu&d)

lnteriupt sour'Ce Type

Eruioniq chip IRQ

VBL signal IRQ

Mouse IRQ

Quart.er-second IRQ
timer

Keyboard rnQ

Response IRQ

SRQ IRQ

Desk Manager IRQ

Flush command ITlQ

Micro abort ffiQ

Clock clrlp ffiQ

Ex[em a] card IRQ

EXTlNT IRQ

DecScrlp Ion

lntermpts when an oscillawr completes a
W3vefonn table {32 p05sible imerrupis from
here).

Inlerrup when vertical blanking (VBL) iS
requested.

Interrupts; as requested at mouse: button press
or movement or at a VBL signal.

Interrupts .system eve.ry 0.26667 second ku
ppleTalk use.

lnterrupi:s upon keypress.

Ge.nera(ed when data is ready for the system
from lhe AppJc DcskTop Hus (ADB)
mk:rocontroller; initiated as a res ult of a
system-gen rated cornrt1<1nd.

Generated when an AD B device requires
servicing.

Generated by the AD B mic.roconu-oUer when
Conlrol-6 -E.~c: is pr s.sed.

O-Con1:rol Delete was pressed

Generated If the ADB microc:ontroller delecl.'5
a faul error wilhia itself.

A 1-sec:ond timer interrupt is generated by
the l-hcrtz .signal from che dock chip through
1.he VGC chip.

The card wants the aucnlion or the 65C8Hi.

vaila.ble from lhe VGC, but not to hook an
ext.errrnl imerrupting devjce; hardwa..rc is no~
av:ajJabJe_

17 6 Chapter 8: Interrupt-Hand rer Firmware

Interrupt vectors
Table 8-1 described th~ -·ou.rces of interrupt and named lhe inlerrupl vector lha[
contains the address of lhe routine that processes each interrupt. Table 8-2 d ·fini..:s lhc
k)Gi.l.ioru lit which each of the named intcrru pt vectors resides.

Table 8-2
~riterrnpt vectors

Address

$FFFE FFFF
$FFFC- FFFD
SFfFA-SFFPB
SFFF FFP9
$FFF4-$.FFF5
SFFEE- FFEF
$Fr'EA-$ffEB
$FFE8-$FFE9
SFFE6-$FFE7
SFFE4-$FFE5

Name

1RQYECT
RESET

I\H
EABORT
ECOP
NIRQ
NNMJ
!\'ABORT

BREAK
COP

Emulation-mode 1RQ/BRK vector
EmulaUon- or n:a.Uve-modc RESET vector
Emu] tion-mode NMI vector
Emulation-mode BORT vector
E.nmlation-modt! COP vector
Native-mode IRQ vector

alive-mode NMI vector
Native-mode ABORT vector
Native-mode BR.K vector
Native-mode COP vector

lf 1/0 shadowing is on, lhe vectors contained In ROM are always used by lhe 6SC816,
regardless of lhe language-card sellings_ This allows you to run native-mode oode wHh
interrupts enabled Ln old appJkations.

lf the applicalion program or operating system disables VO shadour.ing in bank 00 or
$01, Lhcn cll.he.r the applJc tion progr.tm or the operating sy rem must copy the ROM
vectors from FFEE co $ FFF and ihe oode from $C07"1. to $ C07F into RAM al the ame
locations before en bling jnlerrupts. Uthe oodc i nol copied from ROM to RAM ~ lhe
Monlror'.s imerrupL code canno be used.

Interrupt prioritfes

The 65CSI6 processes each type of i:ntc.rrup~ on a priority basis. For instance, if several
of the many lR:Q interrupts should occur at lhe same time, the 65C816 will process all
A pplel alk !.Il:Qs be fore any keyboard interrupts. Priorities for each cype of inlerru pt
are indicated by [heir relative position in the following paragraphs. In ol:her words,
the h.ighcst-pri9rity i..nt.e.rruplS appe .r clo...;;et1t to lhe beginning o [hese de crlptlons.
Lower-priority interrupts appear later in lhe descriptions.

SummCJry o system Interrupts l 77

RESET

RESET forces emulation mode. The interrupt is processed by the firmware and then
vectors to the user link A oo]d start: ;;it.tempts to oool a disk. A coid Sl:art can be
performed in lwo ways:

CJ by turning lhe power olT and on

o by pressing LI-Control-Re.et

RESIIT cold~slan. funccions are as rollow :

o .selS up video

o selS video as output device

CJ sets keyboard as inpu l device

o re.ads dock chip and places system configuration in firmware RAM

D sets up system to match configuration in firmware RAM

o sets up the power-up byte so lhe nexl RESET performs a warm st.art

o scans slots for Disk Il devices and sets motor-on detect b it (motor-on detect causes
lhe f'PI chip lo slow lhe system down t.o 1 MHz when the m.omr-on soft switch is
enabled, a.nd ic restores lh system speed when the motor is turned oID

o goes LO, or scans, for boot device (if bom device is found, jumps to Ir; lf no boot
device is dcte<:tcd, switches in Applesofr BASIC and ·umps to iO

A warm start vcclOrs to user links. If user did not alter links, lhcn a BASIC cold start ls
executed. A warm start can be performed in two ways:

CJ by pres.sing Control-Reset

CJ by using peripheral cards (pulling RESET line low)

The system execu(es the following resel warm-start functions:

D sets up video

D sets keyboard as input device

o reads image of system configuralion in firmware RAM

D sets up system to match configuration

D gene.rates tone (beep re placed wich tone)

D jumps to user reset vector

NMI

NMI vcc::tors rouser link. No NMI interrupts a.re used by the Monitor. Peripheral cards
pull NMl line Jow.

l 78 Chapter 8: lnterr pt-Handler Firmware

ABORT

ABORT veclors tor.he user !Jnk_ If no user li..nk ex.isLS, it vectors to lhe break handler thal
displays lhe address and opcode of lhe code being execuled al I.he lime lhe abon pin
on me 65C816 was pulled low (see BRKJ. The ABORT jutcrrupt can be activated onl,
by hardware in.staUed in the memory-expansion slot.

COP

COP vectors lO the COP (coprocessor opcode) manager vector in RA.t\1:, which pomrs
lO the nrmware. Jf I.he COP manager is nOl installed, lhe firmw;ne displays Lhe COP
message via a software COP in..-;Lructinn.

In emulation mode, COP prints che following:

t:.i:l/addr: 00 cc COP c c

~=aaaa !(~xxioc; Y~yyyy S • ss.5ls ::i-d.ddd P•pp

~~b K- ~ M- mm Q- qq L-1 m- m x-x 1

In nalive mode, COP print5 the following:

Db/addr: 00 c::c COP cc

~-~~aa X xxx~ ~ - yyyy s - ss5 5 Dwdddo P ~pp

6~l)b K=. k M= Q=qq L=l rn=m x=x e=a

+ Note . .- The preceding formats arc for a 40-<:olumn .screen. On an 80-colurnn screen,
I.he second two lines become one line. The cc appearing fn both modes is the
operand of th1..: COP instruct.inn and indicates lo I.he user where the COP ocrurred
CSOO through $FF are val.id COP operands)_

BRK

In emulalion mode, the interrupt vectors to the interrupt (JRQ) h;mdler and Lhen to
the break handler. In native mode, the interrupt vectors d.ircci:Jy 10 a break handler.
This occurs via a software BRK im;LnJcLion only. The break handler sa\•es as much data
~~[he interrupt handler. This allows you m invoke 1.hc Momtor Resume command (R)

to continue program execulion.

In C!mul:al.ion mode, the Break !rut.ruction prints lhc following:

bb.'addr: 00 be 3R.K ce
A~.;;aaa l< - 101xx Y. - yyyy s- s s ~ 5 D= ddl'"ld P=pp

B-hb K - k~ MEmm Q~qq L=l m=rn x=x e=l

In nalive mode, the Break instruction princs the following.

bb/ <lddr: 0 0 b e B. K cc

Awa~aa X=XKKX Y=yyyy S =sgss D~dddd P-pp
e~bb K=kk ~=Qrn Q=qq L=l ~=~ x=x e -0

+ Note: The preceding formaiS are for a 40-co!umn screen. On an 80-column :i'.crcen,
the second two lines become one line. The cc appearing in both modes is lhc
operand of the BRK instruction and indicates to the user where the RRK occurred
(SCIO through $ff are valid BRK operand.'!) .

Summary of system In errupts 179

IRQ
IRQ IncerruplS are as follows :

AppleT,all<: This interrupl has tlie highest priority because its code is very time
intensive; d ta can be lost if rhe sec is not read within 104.167 microseconds
(baud= 230,400) after an AppleTalk SCC interrupl occurs.

Sarlal por1s: In interrupt mode, data will be lost if lhe sec is not read wilhin 1.09
mlJliseconds (baud = 19,200) afler the interrupt occurs.

Scan Una: The scanwHne inlerrupt can ocrur every 63.694 rnicrosccond.s . When Lhe
video counters count down to zero, the interrupt ocOJ.C . The video counte reach
1.ero when the canning beam rcac:he the right side of the can lfne.

Ens;oniq e:hip: The Eruoniq chip inrerrupts when the waveform buffer is comp! "led.
Because the chip conl.ains 32 oscillator: , there are 32 possible imcrrupt5 from t:he
c;:hjp.

VIL: The VBL fnterrupr.s every 16.6667 milliseconds_ The interrupl occurs when the
scrnning beam is retracing from the bo~tom-right corner to the upper-lefc corn.er of
the screen. (Note: Using the heartbeat interrupt h.and1er is the appro\•ed merhod of
exec:u.ting VBL interrupt lasks_)

Meuse: The mou e in~rrupts only if the interrupt option is pecif'.ied . The interrupt
oplion are mouse mo·vement, mouse button press, and vm. i nal.

Quarter-se.c,ond Hmer: n.is timer intcrrupc.s e\•ery 0.26667 ·econd. The timer i used
by Apple'ralk to trigger event processing.

Keyboard: The keyboard i.nterrupl.S if ,a key i.! pre sed.

llasponse; If a command is ent to the ADB microcontroller, the interrupt occur
when Lhe 11 donc" flag is set The rn.icrocontroller interrupts I.he system when the
response data is ready fot the system to re d. If this interrupt occurs, control ~ pa :sed
to the response manager.

SRQ: If an ADB device requires servicing, an SRQ (ervice request) is i ~ed. Tiris
event can inrerrupl the ysiem. When this interrupt occuIS, control is passed to I.he
SRQ manager.

Desk Manager: The ADB mkroc:ontroller causes thi lncenupt if Control-G.P..sc is
pressed. Cont.ro1 is then p ed \o the Desk M;mager.

ff.ush: If O-Control-Backspac:e (Delete) is pressed, the DB micmcontroller clears its
internal type-ahead buffer, issues . Flush command to cxrernal keyboards, and causes
Jn interrupt [f thfa interrupt occurs, control i passed to the Scrap Manager.

Micro abort: If the ADB micmcontrollcr detects a fatal error and Lhe far 1-ermr
interrupt occurs, lhe system i in~rrupted_ If thi interrupl occur , control i pa ed to
the ADB Tool Set

crock eh!p: The dock chip intermplS once each econd.

Ex1emol card5: External c.aros cause intemipts , defined by the card manufacturer.

180 Chapter 8: Interrupt-Handler Fl1mwara

Environment handling for interrupt processing
ror each incerrup discussed in the previous ~ction, the processor can be in either

emulation or native mode. Each mode has its own interrupt vecto , therefore, lhcrc

are two different enlry poinlS lo lhc interrupt handler. To process interrupLS correctly,

the sy tern interrupt handler must save lhe current environrncru., set che interrupt

environment, and proces me imc.rrupt through lhe appropriate interrupt handler.

(You can find more information about saving and restoring th environment in

Chapter 2, "Noles for Programmers." Thal chapter contains sample asscmbly­

language ccxle Lhal saves a part of your environment and sets the system into the

correct mode for intermpt processing.)

Saving the current environment
On entry to each interrupt, the system interrupt handler av · Lhe current

environment and scrs the program bank, data bank, and dirccr-pagc register contenlS

to zero.

The state of lhe machine upon entry lnlO each imerrupt handler is indicated by tl1e

contenLS of the fol lowing registers:

o program bank

c daLa bank

c direct register

c processor rat:us

c A register

c X register

c Y register

The RAM or ROM stace, induding emulation or n:nive mode, ls indicated by the
following:

c, language-card l3le O:>ank 1 or 2, ROM or RA.Nl)

o main or alternate memory (and main and altemaLe zero page)

g ~~I8~ ~:li~R
o 40- or SO-column video

o main r.ack or 7.ero page in use

o ~peed register

- Shadow register

Environment ho ndllng tor lnterrup processing 181

Going to the interrupt enviro,nment

IF the interrup can be prooes.sed by the firmware or a lool set, I.he processor vectors ta
the appropriate handler in native mode, 8-bit mix, in high peed. If the inLCrrupl
cannot be processed by the firmware, the processor pc.rforms the following steps:

1. Swlcches to emulation mode

2. Switches peed lo 1 MHz

3. Switches in text page 1 lo make main screen holes available

4 . Switches in main memory for reading and writing

5. Maps $DOOO-$PPFF ROM into bank $00

6. Switches in main lack and zero page

7. Saves ihe auxiliary stack pointer and restores the main slack poinLer

After Lhe cnvironmem is saved and the new environment is set, the interrupt handler
checks for the source of the interrupL Jf the interrrupt is a firmware imerrupt only (a
BRK or COP insl.rUd..ion), the Firmware }umps (using a JSL) to the appropriate fi.rmware
routine. If il is an inte:rrupt that is passed directly ca the user, then I.he firmware passes
Lhe interrupt to the user via the appropriate Hnk . An i.nterrupl o.n be bolh processed
by the firmware and passed to the \lse.r. If bath occur, the preceding rules listed still
hold, except lhat the particular firmware inLe.rrupt handler will relum 10 the main
imerrupl handler wilh carry set (C • 1) instead of ciear {C 0), which indicate· I.hat r.hc
firmware process<:d the interrupt and chc user does noc need lo know about it

Restoring the origlnat environment

After lhe interrupt has been proces..; d, the system interrupt handler rescores ch
environment and registers to their prei.nlerrupl slate and performs an R11, returning to
che executing program.

o) Nole: The peripheral card (or equivalent internal card) in use is responsible for
saving its lot number in I.he form $Cn (n =slot number) at MSLOT ($0007F8).
MSI.OT is used m the interrupt handler to re.'itore Lhe currently execultng slot
number's $C800 space a.fccr :an inlerrupl ha been processed.

Emulation-mode imerrupts arc supported fn bank $00 only. l\"atfve-modc
interruplS are supported everywhere in memory. Therefore, code running
anywhere except in bank $00 must be native-mode code.

182 Chapter 8: lnterrupt-Harld ler Flrmware

Handling :ereak instructions
In emulation mode, the Apple IlGS dctectS sofrware Break (BRK) irotruction as an
IRQ and jump through Lhe emulation-mode IRQ vector. In that code, the firmware
determines that a Breu instruction was issued and so jumps through the emulation­
rnode BRK vector. ln native mode, the 65C816 can tell the difference between BRK

and IRQ, so jt jumps direellly lhrough I.he native-mode BRK vector.

Apple llGS mouse interrupts
The Apple DeskTop Bus (ADB) microcontroller periodically polls the ADB mouse to

check for act.ivi.1.y. lf lhe mouse has moved or the mouse button has been pushed, the
mouse firmware wm respond to lhe rnicrocontroller by returning 2 bytes of data . The
microcontroUer returns this data [0 the sy tern by writing bolh mouse dal.a bytes lo the
GLU chip (mouse byte Y followed by byte X-thl en bles lhe int.errupt). Data byte
are read on{Y if the Event Manager (lf active) or lhe application program issue the
mouse firmware caJl or the tool call ReadMouse. The GLU chip is the general logic unit
that provides logic elemenlS enabling the 65C816 to communicate wilh the ADB
mic.rocon roller .

The Apple IIGS mouse firmware causes lntcrruprs for lhe 65C816 microprocessor only

if the interrupt mode has been sele<:1.ed via firmware. The Apple TIGS mouse interrupts
in synchronization with the Apple IIGS vertical blanking signa:l (VBL). The mouse can
interrupt the 65C816 a maximum or 60 times per second This cuts down on the burden
the mouse puts on Lhe 65C816.

At pov.•er-up or reset, the GLU chip tu rns Lhe mouse .inc.c.rrupl off and enters the mouse
into a nonioc.e.rru pt state.

Serial~port interrupt notification
~·,hen a channel has buffering enabled, Lhe ftrmware services all interrupts that ocrur
on that channe1. If an application wi.5hes to service interrupts for a given channel
iiself, Lhc application should disable buffering u.stog the BD command in the output
flow. Jf the buffering mode i off, the serial-port fumwa.re will not process any
interrupts. The system interrupt handler will t.ransfer control to the user' · fn[errupl

vector as S03FE in bank $00 (thls is the ProDOS user interrupt vector). The use
interrupt service handler i then completely responsible for all serial-port interrupl
service. You can find further details abou , he serial-port flt'mware and its commands
in Chapter 5, "Seri.al-Port Firmware ."

Serret-port Interrupt no r icatfon 183

If the application does nol want to disable buffering, but does wish to be notified thal a
certain type of serial-port interrupt has occuned, the application can i.nscruct [he
firmware to pass control lo an applkation-inslal1ed routine after lhe system has
servioed ihe I n~rru pt. The a ppHcatlon tells the firmware when il wishes to be notified
and esr.abHshes the address of the application's comp1etion routine by using I.he
Sellntlnfo routine. This call guarantees rhal the completion routine will get control
when a sped.fie type of int:c rru pt occurs, but only after the serial-port firmware has
processed and cleared lhe i.ni:errupL The application lhen uses I.he GellocinFo routine
lo determine whiclt incerrupt condition occurred

A terminal ernuJat.or offers a typical example of when interrupl notification might be
desirable. The emulalOr usually shouJd perform inpul and oulpul character bufrering,
handshaking, and other such operalions. The terminal emulator am be designed to
allow t:he fi.rmwar • lo handle alJ charrmcr-buffering details. The designer of lhe
emulator can have lhe firmware signal lhis emulator program when Lhe firmw~re
re<eives a break character. To enable this spedal-condici.on nmification, lhc emulator
application sets the break interrupt enable funclion by using the Setlrrtlnfo routine.
When the firmware receives a break characCer, Lhe firmware SCC interrupt handler
th n record<; and clear'. the inLerrupt and fin-ally passe:; control lo lhe emu Lator':s
completion routine. This routine calls GeUntlnfo, and ff the break bit is sel, lhe
completion routine knows lhal a break charac:ter has been received.

Note that all inlenup sources (excep receive :md u-ansmit) cause an interrupc on a
tmnsitton in :a. given signal. This means th.at the user's interrupt handler wiJl gel
control passed lo iL 011 bolh posilive and negative uansilions in lhe signals of interest.
For example, a break-character sequence cause." Lwo lnlerruplS: one at the beginning
of I.he 5iequence and one at the end. 'The user's interrupt handler should lake lhis into
account A rouli.ne can alw:iy.s determine the C.l..lrrent stale of lhe bit.s of interest by
using che GelPortStat routine.

The intenu~ complelion routine executes as part of the firmware interrupt handler
and must run in that environment In addition, I.he following environment vadables
must be preserved al lheir enuy LO your routine:

DBR a $00, e•O, m l, x. l

Registers A, X, and Y need no be preserved.

184 Chapter 8: Interrupt-Handler Firmware

Chap er 9

Apple DeskY,o,p Bus
Microcontrolle,r

185

This chapte.r describes lhc Apple DeskTop Bus (ADB) microcontroller. This hardware
device collects information from I.he ADB peripheral devices. In assodalion with r.he
ADB ool Se, I.he dat.a tha(is collected is available w the user. Typical data includes
key-down and key-up sequences, mouse moves, and burton clicks. The firmware thal
performs lhese operations is not doCLJmented here:. See the ADB Tool SeL
documentation for information about lhe ADB firmware. This chapter is for reference
only, providing a deveJoper's view of the complete ADB sy5tem.

The ADB device is a11 T/ 0 port wflh its own mkrocontroller. The microconcrol.ler
accepcs commands from the 65C816, manages ilie internal keyboard, and acts as a
host processor for ADB peripheral devices such as I.he mouse, the detachable
keyboard, and other devices that follow lhe ADB pmwcol.

The ADB syslem has four components and lhree distinct software interfaces.
Figure 9-1 shows the ADB system rrnm a hardware perspective_

ADB 65CBl6
mlc r opro.cess or GLU Mlcrocontroller (uC) i----------------

Mouse Ka'f'boord

Figure 9-1
Apple DeskTop Bus components

The four hardware components are the 65C816, the GLU (general logjc unH) chip, the
ADB microcomroller, and the components auachcd to Lhe Apple DeskTop Bus
device. The application accesses the ADll components Lh.rough the A.DB Tool SeL
The ADB Too] Set talks to the hardware by sending rommaml.'5 through 1.he GLU chip
lo t-he microconlroller. Some oF I.here commands require data transfer over the ADB,
and ol.hc rs termi.na te in the microcomroller.

The GLU chip LS actually a set. of hardw:ne regi.s1ers (some Limes called mailbox
rcgislers) that the 65C816 uses lo uansmit commands and data lO lhe microcontroller
from the 65C816 and that Lhe mkrocontroller uses lO pass data lO the 6SCS16. Boch 1.h
6SC816 and the n:ticrocontrollcr arc independent processors, each running al its own
pace . They exchange data through the GLU chip.

The microcontroller 1..ran:slates lhe commands it .receives imo data st.reams Lhac i~
sends along lhc Apple DeskTop Bus device itself_ All peripheral devices attached to
the bus listen lO the data stream being lransmitred If lhe command is intended for a
specific peripheral device, ic responds and prnisibly transmits d•na and status
Information back to the m.icrccont.rollcr_ The mic.rocomro11er, in turn, tra.ns1ales I.he
data and send.5 the translated data to the 65C8 l 6.

186 Chapter 9: Apple Desklop Bus Microcontroller

There is ac[ually one more ortware interface: the program running independently in
lhc microcontroller itself. Bul ilial is irrun:ncrial here. IL is sufficient ~o note lh;a 1.his ls
:a.n intelligent peripheral device Lhal manages communka.tion.

The Apple !!GS Hardware Reference provides detafls about the hardware interface
belween the ADB m..icrocontroller and its attached peripheral devices and how U1e
micmcont:roller manages die inlernaJ and external keyboard and the mouse, the reset
sequence and che d key, key buffering (type-ahead), and so on.

The Apple lIGs Toolbox Refewnce provides details about the high-level commands
tJm allow access lo the items arrachcd to the ADB.

All.hough mo.st applications do not require the information in this chapter, there are a
few exceptions:

r applications that allow the user to cemporarlly change Control Panel options

r alternative input devices such as a graphics tablet (however, an application may not
need lO worry about this becaw;e a device driver can be transparently hooked into
[he Event Manager)

n multiplayer or muJtidcvice <1.pplications

lf an application needs LO temporarily change some Control Panel options, use the
ADB Tool Ser. Note, however, thac changing certain options can cause the system Lo

fail

An application should not call I.he ADD Tool Set co change Control Panel optlon.s
permanently. If a permanent change in c.ertain system characreristics, u h as 1he
auto-repeat rate or buffer-mode options, is necessary, the applicauon should rnake
the changes by changing lhe Batrery RAM Cu.sing the Miscellaneous Tool Set). Then
c.he appllcaLion should call the rouline TOBRAMSE'I1JP lO update t.hc system with chc
new Battery RA.l\..1 values.

If you are wriling a u.~er program I.hat uses the mouse and the keyboard, you will
probably not need the information in che rest of this chapter. for lhal level of
information, see the Apple /!GS Toolbox Reference. If you are a hardware developer
developing a new peripheral device for the Apple DcskTop Bus, you will need lhe
informalion given here as well as the informal.ion about the bus protocol iisclf and
interface specifications for ADB devices. This latrer information is in the Apple JIGS
Har(iUJ(Jre Neference.

The discussion in this chapter focuses on lhe ADB microcontrollcr anti its
commands. The rc:;l of this ch:ipter is for reference only~ iL shows the application
dc.~igner the kinds of commands lhe ADB TooJ Set issues to the microcontroller. You
s.houlJ not attempt to send any of Lhe e command Mreams to the mk:rocomroller
yourself.

Important

Microcontroller c::ommunlcatfon Is exclusfvely the Job of the Appia llGS Tool Set.

Chapter9: App1e DeskTop Bus Mlcrocontroner 187

ADB microcontroller commends
The microcontroUer u. cs two types of commands: defau1 and mode commands and
ADB comm nds. The defauh and mode commands are used by the Con1.rol Pane1 lo
change system seuings. The ADB commands arc used lO communicate with ADB
d vice.s other !.ha.n. the detachable keyooard nd lhe mouse (lhere an~ handled
automatically).

caunon
An appllcatlon program must Issue mlcrocontroller commands only through the
ADB Tool Sa . If you attemp to use these commands directly. bypassing the tool
sa . you could oause a system fallure, (!For more Information about the too1 set.
see he AppJs lff;;5 Toolbox Reference.)

This section provides a detailed descripl..ion of each ADB rnlcrnconu-oUcr command.
The command values are given in binary format where the mosL significant bit is lhe
1 ft.mo.st bit A pe.rccm sign (%) preceding a string of zeroes and ones Indicares a
binary value. The notation xy subsULuted for a: inary digil pair in a command byte
SLl!nds for 2 bllb lhal .seJecl one of four possible registers_ The notation abed substinHed
for four binary digirs in a command byte, sla.nds for 4 bits lhaE se1ect one of 16 possible
device addresses. The ADB can suppon up lo 16 different device addresses, each or
which ma.y have four hardware registers .

This command synduoni:i:cs chc rnicroc:ontrollcr wim chc 65C816 microprocessor
when a command error occurs. Abort is a 1-byte command wilh a value of o/oOOOOOOO 1.

Reset Keyboard Mlcrocontroller~ $02
This command rcni.rns lhc keyboard mlcmc:onltoller to it.s power-up state_ ll is a 1-
byte command with a value of %00000010.

F[ush Keyboard Buffer, $03
This command clears the keyboard buffer. Any keystrokes that were pending are
forgotten. It js l sbyte command with a value of ~Q(l{)Ol 1.

188 Cnap er 9: Apple Desk.Top Bus Mlcrocontroller

Set Modes1 $04
This command sets modes. IL is a 2-byte commarid, the firsl bylC value is %00000100.
For each bil set in the byte that fol1ow · the SCl .Modes command, the corrc.'>pond.ing
mode bil is :set.

Clear Modes. $05
This command clears modes. Il is a 2-bytc command; the firsl byre vaJue is
*'0000101 . For ach bir scl in lhe byte thal follow llm Clear Modes command, lhe
corre ponding mode bit is cleared.

Tabl ~ 9-1 lists command b[l functions .

Table 9- 1
Bl funct ions

7 Resets from the ADU detachable keyboard alone when lhe Reset key alone is
pressed (Control not needed); works only w ith the detachable keyboard.

6 Sets lhe exciusive-OR/Lock-Shllt mode. {w.t.h the Caps Lock key clown, you 1ypc
lowercase charactcf'. when you press the hifl key.)

5 Reserved

4 Buffer keyboard mode .

3 EnabJes 4X repeal instead of dial (2X) repeal (When the Control key is
pres ·ed, I.he repeat peed for :arrows is rou r times r.he normal speed.)

2 lndud s the Space bar and Delete key on dual repeal. (When I.he Control key is
pressed , the repeal speed for Space bar, Dele te key, and arrows is doubled.)

Disables ADB mouse autopoll (disable I.lie mou:;c).

0 Di.sabl . ADll keyboard autopoll (disables the keyboard) .

ADB mlcrocon roller commands 189

Set Configuration Bytes, $06
Thi command sets configuration bytes. This is a 4-byte command (%00000110) tha.l
use the 3 bytes following the comnu.nd as follows:

Byte l

High nibble
Low nibble

Byte 2

ADB mouse address
ADB keyboard address

High nibble Sets character se (needed for certain languag) most significam bit if
keypad".'' swapped wilh .~

Lnw nihhlP

Byte 3

""r" kf'\rh~.-rl 1-> u ·11 11 hnon"oP (.,~~ -r .. b1 .. C'I ~)

High nibble Sets delay to repeal ralC (3 bics)

0 114 sec
l 1/2 sec
2 3/4 sec
3 1 sec
4 o repeat

Low nibble Sets auto-repeat rate (3 bits)

0 40 keys/sec
1 30 keys/sec
2 21 keys/sec
3 20 keys/sec
4 15 keys/sec
5 11 keys/sec
6 8 keys/sec
7 -1 keys/sec

Table 9-2 lists the keyboard language codes used for byte 2 of the Set Configuration
Bytes command.

Table9·2
Keyboard language codes

Language Abbravlatjon Code Language A bbrevlo-1 Ion Code

English cu . .) us 0 Italian IT 5
Engli h (U.K.) UK 1 German GR 6
French FR 2 Swedish SW 7
Danish D 3 Dvorak DV 8
Spanish SP 4 Canadian CN 9

190 Chap ar 9: Apple Desl<Top Bus Mlcrocontroller

Sync, $07
This command performs l:hree of the preceding commands in sequence. U sets the

mode byte (see "Set Modes, $04" an.d "Clear Modes, 505") followed by the Set

Configuratloa Byr.es (see "Scl Configuration Bytes, $06"). This command ts jssucd by
the system afmr a reset operation. After receiving the command, the miaocontroller

resets itself to jts intema] power-up state and then reselS aU ADB devices. Sync is a

1.byte command wilh a value of '*1l0000111.

Write MicroeontroHer Memory, $08
This command writes a value into lhe ADB microcontroller RAM. It is a 3-by[e
command. The first byte has a value of <.ltiOOOOIOOO. The second byte is the address to

'11/rlte tnlo, The lhird byte is the value LO be written.

Read IMfcrocontroller Memory. $109
This command reads a byre from the ADB rnlcroconnoUe.r memory. The command

reads ROM or RAM locations, depending on the value of the high byte of !he address

si:nl for reading. This is a 3-byte command, The value of the first by~e is %00001001.

1he second byte is the low byte of the micmconttoller address. The third bycc is the

hJgh byte of I.he m.icroconU'oUcr address. If Lhe third byte is 0, RAM is read1 otherwise,
ROM is read. Th.is command rerums 1 byte.

Read Modes Byte. $OA
This command reads Lhe modes byte (see ~Sel Modes, $04" or "Clear Modes, SOSn).
ll is a l~yte command with a value of %00001010. lt returns 1 byte.

ADB mlcrocontroller commends 191

Read Configuration Bytes, $08

This command reads config11ration bytes. It is a I-byte command wilh a value of
q.ooooolOJ 1. This command returns to the 6SC816 (through the data latch in the GLU) a
cor.al of 3 bytes (presented on at a time for reading by the 65C816) representing the
most recently. et: configuration (from lhe mo.."t recent Set Configura.t:ion Bytes
command). The 3 byr are returned in !:h following sequence:

Byte 1

High nibble
Low nibble

Byte 2

High nibble
Low nibble

Byte 3

ADB mous addres.
ADB keyboard addrc .

Sets character set (needed for certain languages)
Seis keyboard layout language (see Table 9-Z)

High nibble Sets de1ay to repea t rate (3 bits)

0 1/4 sec
1 1/2 sec
2 3/ -i sec
3 1 sec
4 No repeat

Low nibble Sets auto· repe:at rate (3 bits)

1 30 keys/sec
2 24 keys/sec
3 20 keys/sec
4 1 5 keys/sec
5 11 keys/sec
6 B.kcys/sec
7 4 keys/sec

Read and Clear Error Byte, $0C
This command returns the ADB erro r byte lO the dl!ta la tch in Lhc GLlJ. It clears the
ADB error byic to zem Tl is a l -bytc command with a value of %00001100. Thi.s
comrna.ncl i useful for hardware developer:, df'hugging new ADB devices.

Get Vers·on Number, $00

Thi! command returru the device version number into the data latch in th GLU. It is a
1-byte command w ilh a vaJue or %'.Xl001101 .

192 Chapter 9: Apple Desklop Bus Mlcrocontroller

Read Availabl'e Character Sets, $OE

This instruction reads available characcer sel'S. It is a 1-byte command with a value of
9W0001110. The First byte vaiuc returned specifies how many cbaracccr- ct identifiers
follow this. first byte. Subsequenl bytes returned through the data latch [demify the
character sets. This command is used by Lh Control Panel lO delerrn!ne hich
character sets are available in che system. It is assumed lhat each mlcrocontrollcr is

paired with a specific megachip. However; when lhe Apple UGS ls manufacwrcd, chc
factory may install one type of megachlp and a different Lype of m.icroconlroller. This
romrnand allows the system lo corr ctly match the capabiHties of the mega chip w:irh

the mie:rocomroller lhat is actually inslaUed in the system.

The order in which lhe character cts arc returned is imponam. The first number
returned corresponds Lo character set 0 in the mega.chip; the nexc number
c.orr~sponds to character set 1.

Read Available Keyboard Layouts, $OF

This command (o/li)()001H1) retums the number of keyboard layouts av ilahlc. Tilis
command is used by lhe Control Pane1 to de~ermine which keyboard layouts are
available in the system. Like the Read Avail;iblc Character Sets commarid, the or<ler in

which the numbers are relumed is important The first number returned represents
layout 0 in the rnicrocontroUcr.

Reset the System, $1 O
Thls command resel.'i the system and pulls the rese(line low for milH econds. It is a
l-byle command with value of %00010000,

Send ADB Keycode, $1 1
This command is used lo emulate anADB keyboard by accepl.ing ADB k ycndcs from
a device and lhen sending lhem to the micro-c:onLroller to be processed as keystrokes
Thi$ command does not proccs either reset-up m rese t-down codes; Lhese resel
keycodcs must be processed separately. This command can be used to detect key-up
events or to emubte a keyboard wilh another device, such , might be used for lhe
b.andicapped, This I.! a 2-bym command. The first byte has a value of %00010001; th
second byte contains the keystroke lo be processed ee die Apple ncs Han;Jwa.re
Re/crt"Tlce for details about lhe values that om sp(mcl lo specific kc , -down, key-up
sequences.

ADB m lcroco11trol ler commands 193

Reset ADB, $40
This command pulls Lhe ADB low for 4 milliseconds. care must be taken wi!:h lhis
command because rcsccting an ADB keyboard clears any pending com~nds,
includ.Ing all key-up events. 'Iltis means that ff this command is .issued as a result of a
key being pressed, when the key is released, the key-up code will be lost and the key will
3ulorepeat until another key is pressed All keys should be up before t.rus command is
executed. This is a 1-byte command with a value of %01000000.

Receive Bytes. $48

This command is used to receive data from an ADB device. This is a 2-byte
command. The flr.:n byte vaJue is l!WlOOIOOO. The second byte value is a combination
of the ADB command (see the Apple JIGS Hardware Reference) in I.he high nibble
and I.he device address in the I.ow nibble. The microconlroller sends this ADB
command byte on the ADB and then waits for the device co return data . The
micrncontroller then returns the data bytes co rhe system in the opposite order that
they were received from the ADB. (The issuer of this comm.and must know -abouc ADB
commands and the values they return.)

Transmit num Bytes, $49-$4F

This command Is W>ed to transmit data to an ADB device. This is a 3- to 9-byte
command. The finit byte value is the Transmit. command itself and has a value of
%01001num, where num is a sel of 3 binary bits that represent a number. The value of
(num + 1) sped.fie,., how many data bytes will be l!'ansmitted as part of this command.
The second byte value is an actual ADB command The chi.rd and subsequent bytes
(num + 1) arc byres Lhat are t.rans.mittcd directly to the devices on I.he ADB bus
irnmedi3Lely following the ADB command.

Enable Device SRQ1 $50-$5F
This command enables an SRQ (service request) on the ADB device at address abed.
It is a 1-byce command wilh a vaJue of MlOiabcd.

194 Chapter 9: Apple DeskTop Bus Mlcrocontroller

Flush Device Buffer. $60-$6F
'lb.is command flu.shes the ADD device buffer at address abed. lL is a I-byte command
with a value of o/oO llOabcd

DJsabla Device SRQ, $70-$7F
This command disables the SRQ on an ADB device a[adtlres - abed. r1 is a 1-b~•le
command with a vaJue of %0111 abed

Caution

~data Is pending liAisn his command Is executed. 1tie pending data could be
Jost. For example. It SRQ Is disabled on the ADB l<eyboord. then all key-up codes
could be lost. See ~ Rese·t ADB, $40. -

ffOnsmit Two Bytes, $80>--$BF
Th.is command transfers 2 bylf;~ gf ~a~ 'Qi!le and. ~t!!t!! lnfmmrH.lon) from a §pcafi£
device using the ADB Listen conunand (:;.ee the Apple llGS 1-lardwaro Reference). TL is
a 1-byte command with a value of %10xyabcd, where xy is Lhe regis~er number and
abed is I.he device address.

Potl Device. $CO-$FF
Thls command is used to gel data from a specific device. Tl uses the ADB Talk
rommand. After the Talk command is executed, the microcontroller waits for the
devic~ to send back dara or for timeout The microcontrollcr wai[S unlit all data has
been received and then returns .a stalus byte (see Table 9-3) to !:he system indka1in,'!
the number of bytes received and then returns the dab. It returns the b~rtcs in an nrder
opposite that in which they WCP received by the ADD. TI1ls is a 1-byte command witl1
a value of %1 lxyabcd, where xy Is the rcgisl ·,- number and abed is the ADB device
address.

• Note: All commands (except the Sync: command) Lhal require more l.han <1 1-byte
transfer auwmalically return LimeouL i.n 10 milliseconds if t.here is no re ponse The
Sync command may require 20 millis-econds to procc.c;s the ADB address byte.

ADB mlcrocon roller commands 195

Microcontroller status byte
The ADB microconu-oller sends a slatus byte lo the system when it detects one of the
conditions lisled in Table 9-3. When the ystem receives the microcomrnller status
byte, a ·ystem inteirrrupl occurs. 'Ille system !:hen determines which of the conditions
caused the interrupt and jumps lO Lhe appropria~e vector. The responses w these
ini.errupts are as follows :

• Response byte: Jumps to lhc response vector and processes incoming data from
lhe mic.rocon1.mller.

Abon/flush: Jumps lo c:hc abort vector and attempts Lo resynchronize the ystem
with lhe Apple DeskTop Bus; if I.his fails, a syslem error occurs_

• Desktop M:anage.r key -quence: Jumps lo the Desktop Manager vector.

• Flush buffer key sequence~ Jumps lo the flush buffer vector.

• SRQ: Jumps lo lhe SRQ handler lhait is used to ather data from the DB devices.
(fhis int.errupl occurs if the device has some da1.a that ir wa.ru.s m ttansmiL Th
device generates a service request to catch the altenlion of the mkmcontroller.)

labia 9-3,
Status byte returned by mlcrocontrollar

B It Condmon

7 Response byi.e if set; otherwise, slatus byte.

6 Abort/nu h

5 De.sktop Manager key sequem;e pn:sood

4 Flush buffer key sequence pressed

3 SRQ vaJid

2-0 if all biL'i are clear, then no ADB data is valid::, 1f data i av ilable, then the b11S
indicate the number of valid bytes received mi.nus 1--between 2 and 8 bytes
total (001 means 2 byte.! ready, 011 means 4 bytes, and so on).

196 Chapter 9: Apple DeskTop Bus Mfcrocontrollet

Chapter

Mouse
Firmware

197

Titls chapter describes lhe pple ITGS mouse firmware. You can read the mouse
position and I.he status of the.: mouse bulcons using tills firmware.

Important
The matelial In thls manual regarding soft swltctles and hardware registers for ttle
Apple llGs mouse firmware Is provided for lnformotton only. Applications must use
the firmware calls only If they wish to be compatible with the mouse device used
In oil Appia II systems.

The Apple IIGS mouse is an imcUig~nt device lhal use.'\ the Apple DcskTop Bus (APB)
to c:ommunicale with the pple llGS ADB microcontrolJer. Thi.s is a departure from
the Applr:.:MouseTt.f card and the Appl.e He mouse interface, each of which depends
extensively on firmware to ~upport I.he mouse. Th· Appte HG:> mouse fITTTiware has a
crue passive mode like I.he AppleMouse, but it differs from the Apple lie mouse, \vhich
requires intern.ipts co function

CertaJn devices, to operate properly, must be the sole ·ource of intcrruplS within a
ystem because lhcy have critical times during which lhcy require immediate service

by the microprocessor. An interrupting communlcaLions card is a good example of a
device that has a criucaJ service interval. If iL is not serviced quickly, char-.ic[cr · mighl
be losr. The t.rue passive mode permits such devices to operace correctly. The passive
mode also prcvcms 'I.he 65C816 from being overburden d wilh interrupis from !.he
mouse f1I1T1ware, as can occur in the Apple ITc if lhe mouse is moved rapidly while an
application program is running.

The Apple IlGS mouse firmware can cause an interrupt only if all of the follm.ving
conditions are lrue:

o The interrupl mode is selc wtl.

o The mouse t.lev1ce 1s on.

o An interrupt condition has occurred.

o A vertical blanking signal (VDL) has occurred.

Unlike Lhe Apple ll mouse, which interrupts whenever I.he mouse device 1s moved,
the Apple ITG mouse device interrupL" in ::.-ync:hroniz.alion with I.he VllL 1liis
automatically limits Lhe lot.al number of mouse firmware interrupts Lo 60 per second,
cutting down on I.he overhead I.he mouse device puts on Lhe 65C816. Jf an interrupt
condition (determined by the mode byte selling) occurs, it will be passed to the
65C816 only when the next VBL occurs.

Wcrnln
Because the mouse firmware information Is updated only once each vertical
blanking Interval, your program must be certain tho a least one vertlcal
blanking Interval has elapsed between mouse reads if It expec s to o.btalri new
Information from the mouse devrce.

198 Chapter 10: Mouse Firmware

Mouse posiifion data
~'he.n we mouse i. moved, data Ls returned as a delta move as compared lo its
previous position, where l:he change in X or Y direc:tion can be as much as to± 63
counts. The maximum value of 63 in eiUier direction rcp:resenl.'i approxima~ely 0.8
inch ,of ilr<l.vel.

<> Note.· A deli.a move represents a number of counts change in position as compared
to che preceding position !:hat the mouse occupied. The Apple TIGS mouse firmware
converts Lhis relat-ive-posllion c:bca (caJlcd a deltti) to an absolute posilion.

The mouse device also provides I.he following information to the mouse firmware:

o current bunon Qi and buuon 1 data (1 if down, 0 if iup)

u delta position since last read

~ Note.- At power up or reser, the GLlJ crup enters a non.interrupt Mate and also rurns
the mouse interrupts off.

'Jne ADB microcontrol!er automatically processes mouse data. The mlcrocontroller
periodically polls 1.he mouse to check for activity. lf the mouse device is moved or irs
button is pushed, 2 by~es are sent to the microconu-oner. The microcontroller sends
both mouse data bytes co the GLU chip {byre Y followed by byte X; fuls enables the
interrupt). The 6SC816 then checks the status register to verify thal a mouse lmermpt
has occurred, the 2 data bytes have been read, and mou.se byre Y was read n~si;. The
GLU chip dears the imerrupL when lhe second by~e has been read. To prevent
overruns, I.he mic.rocontrol:ler writes mouse datai only when the registers arc empty
{after byte X has been read by the system). Table 10-1 shows Lhe J 6 bits returned b;• the
Apple llGS mouse firmware.

Table· 10-1
Apple llGs moLJSe data bits

&I t Function

15 Bun.on 0 status
M-8 Y movement (negalive up, positive "' down)
7 Bunon l SU'ltus

6---0 X movement (negative = left, positive = .right)

Meuse position data 199

Register addresses-firmware only
Table 10-2 shows lhe contents of the register addresses th.at the ADB mkmcontroller
uses lO Lransm.it Apple ilGS mouse data and status Informal.ion lo the 65C8H5.

TabTe 10-2
Appia llGS mouse register addresses

AddreH

SC027

SC024

Funcflon

GLlJ status register, defined as follows:

liit 0 = d
Bit] - 0
Bit 1 1
Bit2 = k
Bil 3 • k
llit-i= d
Bit 5 = d
Bit 6 = 1
Bil 7 • 1

k
d

Must not be ahcrcd by mouse
X position available (read only)
Y position available (read only)
Must not be altered by mouse
Must nm be alrered by mouse
Must not be altered by mouse
MuM not be altered by mouse
Mou.se inlerrupt enable (read or WTile)
Mouse rcgiscer full (read only)

Used by kq•board handlers
Used by ADB handJcrs

Mouse data register:

First read yields X position data. and button 1 daca.
Second read yields Y po5il.ion dau and button 0 data.

To enable mouse interrupl.5, :;er bit 6 oF location $C027 to 1. Recall, however, that only
Lhis b1l and no ot.hc.r should be changed. TI1i.s entails reading 1.he current contents,
changing only lhaL single bi[and I.hen writing the modified value back inlo Lhe r~gister.

II mouse interrupts arc enabled, the firmware dcrermines whether the inlerrupt came
from the mouse by reading biis 6 and 7 of $C027; if born bits • 1, !:hen a mou.-;.e
interrupt is pending.

Reading mouse position data-firmware only
1he followtng sequence of steps mus1 be taken, in thls cxac.1 order, for accurate mouse
readings to be obtained. Failure lo perform the seeps m lhis order will necessital
some correC[ive action because the data will be contaminated Contaminated data is a
cundilion that occun; when the X and Y values that you are trying to read are from
different VBL reads of lht: mouse.

o Read bjt 7 of SC027.

If bir 7 = 0, I.hen X and Y data is nm yel available.
lf b il 7 1, then dat.a is available, but could be: conuunfnated.

200 Chapter 10: Mouse Firmware

o Read bit 1 of $C027 only if bit 7 = l.

If bit 1 = 0, then X and Y data are nol contaminated and can be read The firsl read
of $C024 returns X data and button l data; Lhe second rt"'ad of SC-024 returns Y daca
and button 0 data .

Use caulion when using indexed inslructions. The false read and write results of
some indexed instructions can cause X dar.a to be losl and Y da1.a lO appear where X
data was expected.

If bit 1 == 1 and $C024 has nm been read, then lhe daca in SC024 .is conr.ami.rl.accd
and rnusl be considered useless. If Lhis condition occurs, perform the foUowing
steps:

o Read $C024 one Lime only.

o Ignore lhe byte read in.

Exi~ lhe mouse read routine without updating the X, Y 1 or button data. Thls will not
harm the program; however, il guarantees lhal I.he next lime lhe program reads mouse
positions, lhe positions will be accurate.

The data bytes read In contain lhe fol1owfng infonnation;

• X data b,yte

If bit 7 =- 0, then mouse button I is up.
lfbit 7 = 1, £hen mouse buuon 1 is down.

1 Bit 0--6 delta mouse mo e

If bit 6 = 0, I.hen a posil:ive move is made up to 53.F (63).
If bil 6 = 1, Lhen a negative; muve in two's complement is made up to $40 (64).

I Y data byte

lfbil 7 0, lhen moose button 0 is up.
If b~l 7 = l, Lhcn mou'><! butwn 0 is down

Bit 0-6 delta mouse move
If bjl 6 = 0, !hen a positive cnove is made up lo · 3F (63).
If bit 6 • 1, then a negative nmve in twu's oomplemem is made up to 540 (64).

Position clomps

When the mouse moves rhe cursor across Lhe screen, the cursor is allowed to move
only within specified boundaries on Lhe scret!n TI1ese boundaries are lhe ma.xtmum
cursor posiliorn on lhe screen in the X. and Y direccions. These maximum positi.ons
are ind.icar.ed LO lhe firmware by clamps.

Clamps arc data values Lhac specify a maximum or minimum value for sum<.: oll1cr
variable. Jn I.his instance, I.he mouse clamps specify lhe m[nirnum and maximum
positions of the cursor on the screen,

The mouse damps reside in RAM locations reserved for lhe firmware You should
onlr access these locations using lhe Apple llCS Lllols

Mouse position data 201

Using· the mouse firmware
You can use the mouse firmware by way of assembly language or BASIC. There arc
several procedures and rules to folJow to be effective l.n either language_ The following
paragraphs outline these procedures and rules and give examples of the use of I.he
mouse finnware from each oi !.hese languages.

Fumwore entry example using assemb1y ronguage
To use a mouse routine from assembly language, read the local.ion corre ponding to
the routine you want lo call (see Table 10-4 at lhe end of Lhts ch ptcr). The value read
is the offset of the entry point to the routine (O be caJled.

<) Note. lntcrrupc:i; must be disabled on every ca.11 to lhe mouse firmware.

The following assembly code example correclly sets up the entry poinc for the mouse
firmware. Note that n is the lot number of the mouse. To use lh code, you mu St
decide which mouse firmware command you wish to use and then duplicate the code
for each of I.he routines you use. For example, to use SERVEMOUSE from assembly
code, you would replace the line SETME TRY LDA SETMOUSE with a lfne thal reads
SERVEMENTRY LOA SERVEMOUSE, where SERVEMOUSE is $Cnl 3. Table 10-4
defines all of the offset locations for the built-in mouse firmware routines.

SETMOUSE £QU $Cnl2
ssrME.T~Y LDA SETMOUSE

STll TOMOUSE+2
LOX en

ERROR

o~muse:

LOY no
f?!lP
SE:I

LOI\ fSOl
JSR TOMOOSE
BCS ERROR
PLI?

RTS
PLP
JMP ERRORMESsca:

J MP SCnOO

;Offset to SETXODSE offset ISC4 12 for Apple I ! Gs)
;Get o!fse~ into code
:Modify opero!lnci
;Wh re en = C1 in Apple Ires
;Wh re n ~ ~o i n Apple Iles
;save interrupt status
;Gu~rantees no interrupts
;Turn mouse passivo rnocie on
; .::sR c:.o a modit' ed JMl? instruction
:c = l if il egal-mode-cnte~ed error
;Restore interrupt status
iEXll

tReatore interrupt ~tatus
;Exit to error routin
;Mo<lified operand for correct entry poin

Appl lIGS

SC400

202 Chapter 10: Mouse Firmware

or

Firmware entry examp1e using BASIC
To lurn lhe mouse on U5 ing B. IC, execute I.he follDVl-ing code:

~k ' NT CHRSc•);"PR~4"

P.R: Nl' cu~ Ill

P~:N: CHR${~1 ;"P~ID"

:REM Mouse ready ror output
:R~K • turns the mouse an from BASIC
:REM Res~orc screen output

·0:- A'ole: n.c PRINT CHR$ (4) ; "PR-i3" lo return lO 80-column mode.

To cccpt outputs from BASlC, I.he firmware changes lhe output lin'{s. aL 36 and .$)7 lo
poinl to, C407 and performs an l.NffMOUSE roul.i.m.: (rCS(.:l~ the mouse clamps Lo their
d'-'.faull v:duc.s and positions the mouse lO location 0,0).

To turn lhc mouse arr. cxecule l:he followmg BASIC program:

PK1NT

i'P.INT

FRlNT

CHRS (4) ; "!?Rilll."

CH!<. C 0)

CHRS(~) ; "PR~o·

:REM
:REM
:REM

Mouse ready !or o·~tpi.lt

0 urns the mouse of' from BASIC
Restore screen oucpuc

<+ Illote. Use PRINT CHR$ (iJ) ; "PRf3" to rerum to 80 columns.

To read rru)use position and bun.on statuses from BASIC, execute I.he following code;

rn:NT CHR$(4);
l~~~-JT x, 'f, H

r;;'.2N T CHR$(4);

"IN ..;11

"TN.!O"

:REM
:REM
:REM

Mou~o r Gdy tor lnput
Inpu mouse posi ion
Retu:rn k~yb-oard 1u h nput d vlce "''non j\'IOIJS<,

posltions have been read

\X11cn L.hc mou..~e is turned on from BASIC (for data entry), the fi rm ware change- I.he
input links 9it S38 and $39 to poinl to $C405. When you execute an II\-PlIT statement
while I.he inpuL link is set for mouse input, the firmwa re performs a RF..ADMOUSE
operalion before converting lhe screen-hole data to decimal ASCH and places the
convc.rtcd inpuL dai.a in the inpul buffer at. $200.

ln BA.SIC, the mouse rul1.'i in passive mo<le or a noninw rrupl mude. Clamps are set
automatically lo 0000--1023 ($0000-S03FF) tn both the X and l:he Y direction, and
positkm d:u.a in ~he screen holes are sel Lo 0.

During execution of a BA IC INPUT s.t.atemenl, lhe firmware reads lhe posnlon
cflangcs (deltas) from Lbc ADB mouse and ~dds them w t.hc absolul po.:sitiun in t.hc
screen holes, clamping the positions if necessary, and converts Lhe absolu te positions
in lhc St.:rcen holes lo ASCII furm aL. The fi.rmware d1cn places [Jut data , with che
button 0 status, in the inpul buffer, is.sues a carriage return, and returns to BASIC.

•:• Noie: The term screen hofes has absolutely nothing lO do with the appearance of
anything on the actual display. Screen holes <i re simply unused byics in Lhe memory
area normally reserved for screen-display operations. IJccausc screen holes arc
unused by the display circuitry, they can be used by lhe firmware for other
purposes_

Us[ng the mouse firmware 203

Readl.n,g button 1 status
Button l status cannot be returnee! LO a BASIC program. This would add another input
variable w lhe input buffer, and an error message that states '?E:XTRA IGNORED
would be displayed.

If you want to read butlon 1 status, you can use 1.hc BA.SIC Peek command 1.0 re-~d the
screen hole thal contains thal data. The data returned Lo I.he input buffer i.5 in the
following form:

s x l x 2 x3 x ~ x 5 , s yl y2 y3 y 4 y5 , sh BO b 5 e r

where

s = Slgn of absolute position

x l ..• x 5 = Five ASCII characters indkaling the decimal value of X

yl ..• y5 = Five ASCII characters indic:a.ling the decimal value of Y

sb =Minus sign(-) if key on keyboard v."as pressed during INPUT st:ucment
entry and plus(+) if no key was pressed during Il\"PlJT statement entry

E 0 = ASCII space ch.aracrer

bS • 1 if bulton 0 is pressed now and was al.so press d du.ring la.;£ INPlJr
statemcnc enc:ry

.. 2 if button 0 is pressed now but was not pressed during last DlPlJf
stalement enc.ry

• 3 if button 0 is naL pressed now bu l was pressed during last INPUT
starcmcnt enuy

= 4 if button 0 is not pressed now and was not pressed during last INPUf
sta rement cnt.ty

er .. Carriage return (required as a Lerminator before control is passed from
firmware back to BASIC)

O:• !Vole.· The BASIC program must reset th_ ke)' .strobe at $C010 if sb returns to a
negative state. POKE 49168,0 resets lhe strobe.

The mouse ts resident in the Apple IlGS internal sloe 4. When the mouse iS in u ·e, lhe
main memory screen holes for slot 4 hold X and Y ab olure position data, lhe rurrent
mod~. bulton 0/1 status, and Interrupt Latu . Eight additional bytes a.re used ror
mouse inforrnaLion storage; they hold the ma.xlmum and minimum damps for the
mouse's absolute position.

Table l 0-3 shows the mouse's screen-hole use when Apple UGS firmware is used.
Pigures 10-1and10·2 show how lhe bits offfic buLton interrupt status byte and the
mode byte are assigned.

20tl Chapter 10: Mouse Firmware

Tcble 10-3
Posttlon and stotus Information

Address

$47C
S4FC
$57C
$SPC
$67C
$6FC
S77C
$7FC

Use

Low byte of absolute X position
Low byte of absoluie Y position
High byte of absolute X position
High byte of absolute Y position
Reserved and u ed y firmware
Reserved and used by fi.tmware
Buuon 0/1 interrupt status byte (sec Figure 10-1)
Mode b}rte (see Figure 10-2)

l7lolsl4J3l2l1loJ
l

Figure 10-1
Bu ton lnt€trrupt status ,byte, S77C

[7I6IsJ4I3 I2 J1Ja J

~

Prnvlousv. bu o l wos up/down (0/1)

Movemen Interrupt

Button 0/1 interrup

V~l In errupt

c rem ly, button 1 Is up/down CO/ l)

X/V moved sine e last READ OUSf

Pre ous . outto 1 was up/down (0/1)

CUTm IV. button 1 Is up/dovln (0/1)

Mouse off/on CO/ I)

In errupt on next VBL I mouse Is moved

In arr pt on ne~t VBL Ir button Is prnssgd

Interrupt on VBL

Reserved

}-Used by flrmwore on~ ~eserved

Reserved

Mouse programs in BASIC
Two program example are provided below. The first example, Mouse.Move, rcadJ
and displays th mouse position informa 'on. The second e ample is called
Mou.<>e.Draw and allow you to make simpJe drawings on I.he creen in low-resolution
graphics mode.

Mouse.Move program
10 HOXE.

20 PRINT ''MOUSE .MOVE DE:MO"
30 PRINT CHRS(4,;nPR#q":PRINT
~c E.'R T CBR$ (Ill i "PR 0"
50 PRINT CHR$(4) ;"I t;"

60 INPUT "
11 ;X, Y,S

10 VTAB lO:l?RINT X;" ny11

ea JF 5 > 0 T!:IEN 60
90 PRINT CHR$(41;~1N*0"
100 PRINT CHR$(4l ;~PR#~":PRINT
110 E.'R NT CHRS(~);"PR~O"

Co.mment!'.i

J.ine IO dears the screen to blade.
Linc 20 prints a heading m~ssage.

CHR$ (1)

115 11

CHR$(0)

Linc 30 starts up rhe mouse's in crnal program.
Line 40 e.stabllshes that subsequent PRI 'T commands will send information to lbe monicor
screen.
Line 50 establi ht?.S thaL the subsequent INPUT command will read the mouse.
Linc 60 tra115fers mouse posit.ton and butt.on Slat.us reading to lhe numeric variables X. Y,
and S.
Un 70 df.splay lhc numeric vad bles X, Y, and S on the 10th line or tbe monitor screen,
Llne 80 telUms the program for more mout.c data if no keyboard key has been pressed. lf a
key has been pre.s.sed, Lhe program drops to line 90.
Line 90 reestablishes your keyboard as th input device.
Linc 100 reset.c; the mouse position data to zero.
Line l 10 ree .-blishes lhe monitor screen as lhc output device.
Line 120 nd.s Lhe p rogram,

206 Chapter l 0: Mouse Frrmwara

Mouse.D1ra1w program
10 REM MOUSE.DRAW Uses mouse to draw lo-~es qtQph!cs
lOG GOSOB 1000: R~M TURN ON THE MOUSE
llD PRI T CHR$(4} ;ttIN 4~
lZC I PUT "";X,t,S:RE.M READ MOUSE. DATA
13C IF S=l THEN lOO:REM CLEAR THE SCRE~N
H C IF S<O THEN :300; REM TIME: mo QIJIT?
150 REM SCA.LE MOOS~ POSITION
160 XI T(X/25 . 5751
110 Y=lJT(Y/25.575)
lBC· PI.OT X, Y

l 9C• GOTO 120

JOC REM CHECK IF 'l'IM:t. TO QUIT
JlC PRINT CBR.$(4} 1"IN 0"
320 VTAB 22;PRI'.NT "!?RESS RETURN TO CONT OR E:SC TO QUlT"
3JC VTAB 22:HTAB 39:GE~ A$:POKE - 16368,0
3~C IF A$-CHR$ {1)) THE.'.N HOME.:GOTO 110
35() IF A$<>CHR$(271 THEN 330
JGO REM CLEAR SCREEN A D ZERO MOUSE
J/C 'l'EXT:HO E
360 l'R.INT C!l!\$4~);"1?R11~":PRINT CRRS(l)
390 !?il.IN CHR$ {~);"PR 0 "
~00 ENO

1000

Hao
~020

103()
1040
1050

Rl!;M c ear the sc-reen and initiali;t
ElOME;GR

COLOR • 15
PRINT CHRS (4); "PRi4": l'RlNT CH.il..S C-)
PRINT CRR$(4);"PR 0"
~ETllRN

tho mouse

Mouse programs in BASIC 207

C.OnunenlS

Lin 10 rcmlnds you whal the program does.
trnc 100 all lhc subroutine al lines 1000 through 1050
Line 110 esta.bl!shes thal the sub~ucnl I PITT comm~nd will read the mouse.
Llne 120 transfers mouse po~llion and buuon i:ilSilU5 dala to lhc num ric variables X, Y, and S.
Line l30 reinitializes I.he mou:se If [ts buuan ls pressed.
Llne 140 M'!Ods the program lo its exit routine if a key on the Apple keyboa.rd has been
pressed
Line ISO reminds you wlui.t lh · n ·xl two hne.5 do
Lines 100 :;ind .170 conven the range of mouse po~ilion numbe r5 (0 co 1023) lo lhe range of
!ow-rcsoluHon graph~ coordinrues (0 to 40).
Line 180 plots a polnt on lhe monitor s reen.
Linc 190 sem1s the program back far more mouse data.
Lme 300 reminds you what Hnes 310 through 400 do.
Line 310 tells the computer lo accept input rom its keyboard .
Linc 320 prinl.S prompting i.n.struclions on line 22 o lht! /;ere n.
Line 330 fetches your answel' to the prompt t111d chang ·s th• buuon st:illus number back lo
positive (iL becomes neg tive whenever you prc11s a k~y on rh Apple keyboard).
Line 340 !iCnd..<; U..c progrom oock lo report.Ing mouse data lf)'OU pressed Retum.
Line 350 feLChes anOlher answer if you press any key except Esc.
Line 36o re:mlnru you what h;lppcru next
Linc 370 cancels graphics mode and de rs the :scret'.n
Linc 380 resel.S lhe mouse position data to 1.ero.
tine 390 rcc.sw.blishes lhe monitor sc.reen as the output device .
Line 100 ends lhe program.
Llne IOOJ reminds you wl)a{ !.he rollowing subroutine docs.
Line 1010 dears I.he monitor screen and 5el5 up Apple's low-resolution graphic& mo<le.
l inc 1020 cstablishe.s that the cursor wall be white:.
Linc: 1030 st.arts up the mouse's fntema.I program.
Linc 1040 cstabllshes that subsequenL PRINT commands wl.ll send inform Lion to the monitor
screen.
Line 1050 returns to lhc: main program (llne 100).

206 Chapter 10: Mousa Frrmware

Summary of mouse firmware calls
Tue firmware calls to enter mouse routines are lisl.ed in Table 10-4. These calls
conform m Pascal 1.1 prolocol for periphe.ml cards.

l'oble 10~4
Mo use firmware calls

location RoUitlno Deflnmon

Pa sc-cJ ~ lrmwa re entry points ror Ille mouse

SC4DD
S.C40E
SC40F
SC410
$C111 = $00

PINlT
PREAD
PWRITE
PSTATUS

Pa:s.c:al INl T device (not implcmcn[C'd)
Pascal READ character (not implemented)
Pascal WRI'["'E character (not i m pie men red)
Pas:<:a1 get clevi ce sea n..is (not implemented)
Indicates that more routines follow

Routines lrrtplemen1ed 01"11 Apple llG.S, Appia II, and AppleMcuse emd

$C4 12
$C413
$C414
$C4 15
$C416
SC417
SC4I8
$C419

ET MOUSE
SERVEMOUS E
l\EADMOUSE
CLE.AR.i"1:0USE
PO SMOUSE
CLAMP MOUSE
HOM EMO USE
INITMOUSE

ets mouse mode
Services mouse interrupt
Reads mouse position
Cle>i.rs mouse position to 0 (for del ta mode)
Sets mouse posilion to user-defined position
Sets mouse bounds in a window
Sets mouse to upper-left corner of damping window
Re.set.-; mouse clamp. LO d~fau1t values; 001. .. mouse
position to 0,0

Entry points compa lib1 GI wltl'\ AppleMou~o card; thoy do ri olhlng l.n Apple llGS

SC4.1A
SC41Il
$C4IC
$C41D
$C41E
$C41F

DIAGMOUSE

COPYRIGHT
IDiEDATA
SETVBLCNTS
QPTMOUSR
STARTIIMER

Olher slgnlfl cant loeatlon.s

S C400 BINlTE NTRY
SC-105 BASTCINPUT

S.C407 B . SICOUTPU"

sows . 501
$C•10C = S20
:SOffB $D6

Dummy roulin.e; clears c and performs an Irrs
Dllmmy mmirrc; el~{[.ffl c :rnd ~ffrums an RT§
Dummy roulirH::; dca.rs c and performs an RTS
Dummy routine; dears c and performs an RTS
Dummy muline; clears c and performs an RTS
Dummy row.inc~ clears c u nd performs an RTS

lnitial entry poim when coming from BASIC
BASIC input encry point (opcode SEC...") Pascal ID
byte
BASIC output emry point (opcode ctC) Pasca ~ ID
byle
Pascal generic sign.au re bj•te
Apple technical"suppon ID byte
AdditionaJ ID b)' lC

Summary of mouse firmware c alls 209

p,as·car earls
PascaJ recognizes the mouse as a valid device; however, Pascal is nol supported by Lhe
fLrmware. A Pascal driver for the mouse is available from Apple to interface programs
with lhe mouse. Pascal calls Plnit, PRcad, PWrite, and PStatus return with the X
regislCr set IO 3 (Pascal illegal operation error) and Lhe carry flag el lo 1. Following is a
list of Pascal fi.rmware calls.

Pin it

Function

lnput

Output

PRead
Functlon

lnpm

Out.put

Function

Input

Output

PS tofus

No imp]emented (just an cn1ry point in ca:se user calls it by mistake),

All register and status bli:s.

X = $03 (error 3 =bad mode: illegal operation). c = 1 (always).
Screen holes: unchanged

Nol implemented (just an eru.ry poinc in case user calls it by mistake).

All regi.sters and status bl!.S,

X • $03 (error 3 =bad mode: illegal operation). c = 1 (alwars).
Screen holes: unchanged.

NOE implemented (just an entry point in case user calls it by mistake).

AJI regiscers and stalUS bits.

X = S03 (error 3 • bad mode: fllegal operation). c = 1 (alway).
Screen holes : unchanged

Function NOL irnplememed (just an entry point in case user calls il by mistake).

ln~ut All rn~§lt:f§ ~m1 ~rall§ bil§.
Output X • 503 (error 3 = Bad mode: HlegaJ operation). c • 1 (always).

Screen holes~ unchan.ged.

210 Chopter 10: Mouse Firmware

Assembly~lan.guage calls
Thi section dcso-cbes the as·embly-language firmware calls . When ynu use the mouse
from ai embly language, you mu l keep scvernl items in mind.

c For built-in firmware , n =mouse sloe number 4

o The foUowing bits and regisLers are not changed by mouse firmware :

o e, m, I, x

D di.rect 11egistc r

o data bank register

D program bank register

o Mouse screen holes should not be changed by an appUcallon program, with one
exception: During execution of the POSMOUSE function, new mouse coordinates
are wrirrcn by lhe application program directly inio the screen holes. No other
mouse screen hole can be changed by an appl ication program without adversely
affecting the mouse.

o 11tc 65C816 assumes I.hat the mouse firmware i.s entcr~d in the fo llowmg machine
state:

D 65C816 i in emu]alion mode.

:i Direct register = SOOOO.

rJ Data bank register $00.

o System peed = ra or sJow (does not matter which).

D 1'ext page I shadowing is on lo allow access to screen-hole data .

Herc are tJie actual firmware routines_ Nolice thu each is specified by its offret enLry
address_ Recall that lhe offsel entry poinl is a value at a given location (for example,
SC412) to which you add lhe value of !he main entry point (for example, C400) to
obtain the aci:uaJ address to which the pmcc ... sor must jump to execute lhc rouline

SETMOUSE, $C412
Function

Input

Output

Sets mouse operation mode.

A= mode ($00 lO $OF a.re the only valid mode).
X = Cn for standard inlerface (AppJe IIGS mouse not used).
Y • nO for s tandard interface (Apple !rG5 mouse not used)

A= mode if ilJegal mode entered; otherwise, A is scrambled.
X, Y, v, N, z • scrambled
c = 0 if legal mode entered (mocie is <= $OF).
c = 1 if m gal mode cncered (mode fs :> $OP).
Screen holes: Only mode byte are updated.

Assembly-longuoge colls 2 11

SERVEMOUSE, $C413

Input

Outp u t

Tescs for interrupt from mouse and resets mouse's interrupt line.

X - Cn for g Landard interface (Apple llGS mouse not used).
Y = nO for standard inle.rfac::e (Apple IIGS mouse not used).

X, Y, V, N, Z = scrambled
c: • 0 if mouse interrupt occurred
c = l if mouse interrup did not occur.
Screen hoJcs: Interrupt status bils updat d to show currem ~i:a.tus.

READMOUSE, $C414

Function

Input

Output

I~eads delta (X!Y) positions, updaces s.b olute XIY po.silJons, and reads
button statuses from ADB mouse.

A .. not: affecled_
X • Cn for standard imerface (Apple UGS mouse not used).
Y = nO for standard interface (Apple IlGS mouse nol used).

A, X, Y, V, N, Z = scra.mb!cd.
c "" 0 (al ways).
Screen holes: SLO, Xiii, YLO, Ylll buttons and movement status bits
updated; inte.rrupt status bits are cleared,

CLEARMOUSE1 $C415
Function

Input

Resets bunons, movement, and interrupt Slatu.s to 0, X, and Y. (This
mOO.e is intended for delta mouse po.~ilioning instead of lhe normal
absolute posftionrng.)

A = not affected.
X = Cn for tandard inlecface (Apple IIGS mouse nm used).
Y • nO for standard inlCrfac:e (Apple ITGS mouse not used).

Output A, X, Y, Vt N, Z =scrambled.
C'. = 0 (always).
Screen ho1es: Sl.O, XHl, YLO, YHr bullOns and movemem status bits
updaled; inlerrupt status bits are cleared_

212 Cho pter 1 D: Mouse Firmware

POSMOUSE, $C416
functioil

Input

Output

Allows user to change current mouse position.

User places new absolute XIY posit.ions ~irectly in appropriate screen
hole .
X = Cn for standard interfaoe (Apple llGS mouse not used).
Y nO for tandard interface (.Apple JIGS mouse not used).

A, X, Y, V, N, Z • scrambled.
c = 0 (always).
Screen holes: User changed X and Y absolute posiLions onlyi bytes
changed.

CLAMPMOUSE, $C4 17

Function

Input

Output

SelS up clamping window for mouse use.. Power-up default values are 0
to 1023 (SOOOO to $03PF).

A = 0 if entering X clamps.
A • 1 if entering Y damps.

Clamps arc cn1ered In slot 0 screen holes by I.he user as follow :

$478 • low byte of low clamp.
$4F8 = low byte of high clamp.
5578 = high byte of low clamp.
S5F8 = high byte of high clamp.

X = Cn for standard interface (Apple IIGS mouse not used).
Y -= nO for standard interface (Apple ncs mouse nol used).

A, X, Y, Y, , Z = cramblccl
c • 0 (ahvays).
Screen hol : X/Y absolute position is set lo upper-left com r of
damping window. Clamping RAM values in bank SEO are updated.

~ Nole: The Apple UGS mouse firmware performs an automatic HOM · 10USE
operation af1er a CLAMPMOUSE. HOM.Ei\10USE execution is required bee.au e Lhe
dclca information is being fed to the firmware instead of ±1' , as in the ca e of the
Apple II mouse and 1.he 6805 AppleMou e microproce ·sor card. The delta
information rrom the Apple JIGS ADB mouse alters the a olute position of the
screen pointer, u ·ing clamping techniques nol u cd by the othe r two mou ·e
devices.

Assembly-language calls 213

HOMEMOUSE. $C418

Function

Input

Output

Sets X/Y absolute posiLion to upper-left comer of damping window.

A • no affected.
X = Ca for standard interface (Apple ITGS. mouse not used).
Y "' nO for srnndard interface (Apple IIGS mouse nol used).

A. X, Y, V, N, Z • scrambled..
c - a (always)
Scree:n holes: User changed and Y absolute posjt.ions only; bytes
changed.

INtTMOUSE, $C419

Function

Input

Output

Set.s screen holes lO default values and sets clamping window co dcfauk
value of 0000 to 1023 ($0000, $03FF) in both the X and Y dircctionst
resets GLU mouse jnterrupl capab!litfes.

A= not affected.
X • Cn for s1.andard lnt •rfacc (Apple UGS mouse not used).
Y =no for srandard interface (Apple JIGS mouse not used).

A, X, Y, V, N, Z =scrambled.
c 0 (always)
Scr~en hulcs: X/Y posiLions, buUon statuses, and lnterrupl status are
reset.

""~ Note.· Button and movement statuses a re valid onJy after a READMOLiSE operation.
Imerrupl st.atus bits are valid only after a SERVE.MOUSE operation. Interrupt status
bits are reset after READMOUSE. Read and use or read and save lhe appropriace
mouse scrccn-ho]e data before enabling or reenabling 6SC816 inr.erruplS.

214 Chapter 10: Mouse Firmware

Roadmap to
the Apple llGS
Technlcal Manuals

The Apple IIGS personal computer ha:c; many advanced features, making il more
complex than earlier models of the Apple Il. To describe it fully, Apple has produced
a suite of technical manuals. Depending on che way you intend to use the Apple IIGS,
you may need co refer to a select few of the manuals, or you may need lo refer to most
of them.

The technical manuals are Iisred in Table A-1. Figure A-1 is a diagram howing the
rclationships among the different manuals.

215

Tablo A~1
Apple llGS technical manual,.;

TJtle

Technical fn.trodiletion to the Apple I/GS

Apple llGS 1-1 ardwa re Reference

Apple l!G'S Ftrmware Rejeren. ce

Programmer's Introduction
to the Apple JIGS

Apple IJGS Toolbox Reference,
Volume l

Apple !JCS Toolbox Reference,
Volume 2

Apple !!GS Progn•Hnmer's Workshop
Reference

Apple iJGS Programmer's Workshop
Assembler Reference

APJ;le JIGS Program1ner'.> Worts hop
-· -c Reference

ProDOS 8 'J'ech ntcal Reference Ma n.ual

Apple l!GS ProDOS 16 Re/ereru:.e

Human ltiteiface Guidelines:
1iie Apple Desktop fri.tc-iface

Apple Nt.mwrics Mamml

Subjec-t

What the Apple llCS is

Machine imemals-hardware

Machine imemals-firmwam

Concepts and a .sample program

llow the tools work and .some toolbox
specifications

More toolbox speciflcat.ions

The dcvclopmcm environment

Using the APW assembter

Using C nn [he Apple HGS
- . ~

Sr:andard Apple U operaLin system

Apple IlGS operating system and System
Loader

Guideline~ for the des kwp inlerface

Numerics for all Apple computers

2l6 Apperodlx A: Roadmap to the Appfe llGS Technical Manuals

Figure A - 1
Roadmap to the technical manuals

1o start finding ou1
abOul he Apple llGS

ro learn how
rhe Apple llGS works

; o start learning
Io program the Apple llGS

To use hG toolbol<

To use lt'le developmen
B nvlronment

To opera1 e on fl!es

To 1.JSe C ------

lo use - -----­
a~embly jonguage

Appendlx A: Roodrnap to the Apple UGs Tecnnlcal Manuals 217

The introductory manuals
'These books are introductory ma.nuals for developers, computer enthusiasts, and
01.her Appl1e lIGS owners who need technical i.nformati.on. As introductory manuals,
their purpose is whelp the technical r·eader understand the feal11J.res of the Apple lIGS,
particularly !he features that are different from other Apple computers. Having read
che introductory manuals, tlte reader will refer to specific reference manuals for detail
about a particu!.ar aspect. of the Apple IIGS.

The technical introduction
Th.e 'J:'echntcaJ lntroducston l'O ihe Apple JIGS is the first book in the suite of technical
manuals a.bout the Apple IlGS. It describes an aspects of the Apple UGS, including its.
features and general design, lhe program cnvjronments, !:he toolbox,. and the
development environment.

\Vhere the .Apple Ifc,s Owner's Gulde is an introduction from the poi.nt of view of the
user, lhc tcchnka1 introduction manual describes the Apple llCS from the point of
view of the program. rn oLher words, it describes the thing.s I.he programmer has to
consider while designing a program, such as the operating features the program uses
and the environmem in whkh the program rum;_

The programme1r's lntroducUo·n
When you start writing ppl1e UGS program.<;, the Programmer's Introduction to the
Apple HGS provides 1.he concepts and guidelines you need. It is no[a complete course
i.n programming, onJy a starting poinc for programmers writing applications lhat use
the Apple desktop imerrace (wilh window', menu , and the mouse). It intmduces the
routines in the Apple TIGS Toolbox a.nd the pmg:ram environmelll Lhey run under. h
indude-S a sampte even:t-driven program rhat demon -trate.s how a program uses ilie
toolbox and I.he operating system. (An event-driven program waits in a loop until rt
detects ;;1n event such as a dick of the mouse buaon.)

218 Appendix A: Roadmap to the Appia llG:S Technicail Manuals

The machine ref·erence manuals
There arc two reference manuals for the machine itself: the Apple JIGS Hardware
Reference and the Apple IIG. Firmware Reference. These books contain detailed
specillcation.s for people who v.rant to know exactly what's inside the machine.

Tile hardware reference manual
The Apple JIGS J/ardwaro Reference is required reading for hardware developers,
and it. will also be of interest Lo anyone els who want.s to know how the rnachil · works.
rnformaLion for developers includes the rnc.chanical afld electtical. specifkalion of all
connectors, both inccrnal and external. Information of genern! interest includes
de.5criptions of the inrcmal hardware, whkh provide a b ner understanding of the
nachin.e's features.

The firmware reference manual
The Appfe IJGS flnnware Reference describe. the programs and subroutine I.hat are
stored in the machine's read-only memory• (ROM), with wo signilkant exceplion :
Applesoft BASIC and lhe toolbox, which have 1.beir own manuals_ The firmware
reference rnanuar includes information aboul interrupl routines and low-level 1/0
subroutines for I.he serial ports, lhe disk port, and the Apple DeskTop Bus intcrf ,
which controls the keybo;;ird and the mouse. The manual also d scribes Lhe Monitor, a
low-level programming and debugging aJd for assembly-language programs_

The toofbox ref,erence manuals
like the Macintosh, lhc Apple rIGS has a buill-ln tooloox. The Apple HGS Toolbox
Reference, Volume 1, introduces concepts and terminology and leUs how to use some
of I.he tools. The Apple JIGS Toolbox Reference, Volume 2, contains information
about lhe rest of the [O<Jls and also tells how LO wdte and install your nwn tool set.

Of course, you don't have lo use I.he molbox al all. If you only wanl Lo wri te imple
programs thal don't use the mouse, nr windows, or menu ,, or O[her parts of the
de ktop user inlerface, chen you can gel along without lhe toolbox. Ho-,.vever, if you are
developing an application thal u.se:s the desktop inlerf: ce or if you want to use the uper
Hi-Res graphics display, you'll find lh.c toolbox Lo be [ndi pcnsabl .

In applications that use the desktop user interface, commands appear . option· in
pJJlladown menu., and material being worked on appears in re 1ctangula:r areas of th·
screen called w1'ndows. The user selects oornmands or other mate.rial by using the
mouse to move a pointer around on the screen.

The oolbox reference manuals 219

The programmer's workshop reference manual
The Apple ITGS Programme.r's Workshop (A.PW) is the development environment fo r
lhc Apple IlGS computer. APW is a set of programs that enables developers to create
and debug application programs on the Apple IlGS. The Apple IJGS Programmer's
Workshop Reference jncludes information about the APW Shetl, Editor, Linker,
Debugger, and utility programs; these are the pa.rts of the workshop that all developers
need, regardless of which programming language they use.

The .APW reference manual describes lhe way you use the workshop to create an
application and includes examples and illustrations to show how di.is is done. In
addition, thi-; manual documenis the APW Shell to provide the information necessary
lo write an APW utilicy or a language compiler for the workshop.

Included in the APW reference manual are complete descriptions of two randard
Apple IIGS file formalS: I.he 1.ext. me format and the object module formal. The text file
format is used for all mes wriltcn or read as "standard ASCil files• by Apple Hes
programs running under ProDOS 16. The object module format is used for che ouptut
of ail APW compilers and for all files loadable by the Apple JIGS System Loader.

The programming-language reference manuals
Apple amentJy provides a 65C816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they fo1low th standards defined jn the
Apple JIGS Programmer's Workshop Reference.

There Ls a separate reference manual for each programmlng language on the
Apple UGS. Each manual includes lhe specifications of the language and of the
Apple TIGS libraries for the Language, and describes how Lo use the assembler or
compiler for chat language. The manuals for Lhe languages Apple provides are I.he
Apple l!GS Programmer's Workshop Assembh!r Reference and lhc Apple JIGS
Programmer's Workshop C Reference.

The Apple IIGS Programmer's Workshop Reference and the two programming­
language manuals are available through the Apple Programmer's and DeveJoper's
AssociaUon.

220 Appendix A : Roadmap to the Apple llGs Technical Manuals

The operating-· system ref ere nee manuals
There are two operacing systems that run on Lhe Apple IIGS: ProDOS 16 and
ProDOS S. Each operating system is described in its own manual : PmDOS 8 Technical
Reference Manual and Apple l/GS ProDOS 16 Reference. ProDOS 16 uses the full
power of the Apple IlGS. The ProDO 16 manual describes its features and includes
informallon about I.he System Loader, which works closely with ProDOS 16. If you a re
writing programs for lhe Apple ITGS, whether a." an pplication programmer or a
system programmer, you are almost certain lo need the ProDO 16 reference m nual.

ProDOS 8, previously ju -r caJlcd ProDOS. is the standard opcraLing ::.y-tem for most
Apple IT computers with B-bLl CPUs (Apple fi e, ne, and 64K Ll Plus). U also runs on the
Apple HGS. As a developer of Apple JIGS programs, you need the ProD~ 8 Technical
Referrmce Manual only if you are deve loping programs lO run on 8-bit Apple !l's ~
well as on the Apple lIGS.

The all-Apple manuals
In addition m I.he Apple UGS manual mentioned above, there are two manuals thal
apply to aU Apple computers: Human Interface GutdeUnes: The Apple Desktop
Interface and Apple Nrtmerlcs Manual. If you develop programs for any Apple
computer, you should know abouL lhose manual .

The lluman Interface Guideltnes m~nual describe Apple's standards for lhe desklop
interface of any program that runs on an Apple computer tr you are writing a
commercial application for the Apple TlGS, you should be fully familiar w ith I.he
contents of this manual

The Apple ll/umen·c.s Manual js the reference for Lhe t.andard Apple :"Jurneric
Environment (SANE™), a full implementation of the IEEE Standard for B1'nary
Floating-PotnJ A rlthmctfc (IEEE Std 754-1985). 1he functions of I.he Apple ncs ~AI'-'E
tool sel match I.hose of lhc Madntosh SANE package and of Lhe 6502 asscmbly­
languagc ANE software. If your applicalion requir aco.iralc or robust arithmetic,
you'll probably want to use Lhe SAl\'E roulinc in Lhc Apple IJG . The Apple llGS
Tooibax Reference t.ell how to use the SA.1\'E routines in your programs. The Apple
i\'umerlcs J~a.nuaJ i the comprehensive reference for the SANE numeric roulines.

The all-Apple manuals 221

A

Firmw,are ID Bytes

The firmware ID bytes are used to identify the particular hardware system on which you
are rurrently working. Table B-1 lists lhe local.ions from which you can read lD
information. Each sy:;cem maintains three cparale JD byte locations, as indicared in
the table. Jr all three ID bytes mau::h for a given system type, you will know that your
software is running on thaL particular sy Dem.

Tabt'e B·l
ID Information locattons

Mein ID Sub IO I Sub 102
s.yst•m ($cFBB3) (FBCO) ($FBBF>

Apple II $38 $60 $2f
Apple Il Plus $EA $EA EA
Apple lie $06 $EA $Cl
Apple Ile Plus $06 $EO $00
AppJe llGS $06 EO $00
Apple Ik $06 $00 $FF

pple Ile Plus $06 $00 $00

To djsli.nguish lhe Apple IIGS from an Apple He Plu (lhe ID bytes arc identical), run
c.he followi.ng short routine wil.h the ROM enabled i:n the language card.

SE:C
JSR $ E'E.1 F

; c - l as a starting point
; RTS tor Apple II computers
; pr ior 1:0 t h e 1\pple II Gs

8CS I TS APPLE l IE ~If c ~ l , ~hen t he s ys~em is an old Apple II
HCC ITSAppleI.I GS ; If c = 0 , the n he system is a Apple !!Gs or ate r and the

r e gi sters are retu r ned with t ho i nfo r mation in Table E- 2 .

222

Table B-2
Register b it Information

Register

A

y

x

Bi t

15-7
6
5
4
_;,

2
l
0

15-8

7--0

lntormaUon

Reserved
1, if system has a memory expansion slot
1, if system has an IWM port
1, if system has a buil[-in dock
I, if system has Apple Desk.lop Bus
1, tr sys~em has sec
1, if system has external slolS
1, if system has in[ecnal ports

Machine ID:
00 Apple llGS
1-FF Fulllre machines

ROM version number

The Y regiscer contains the machine ID; ttie X register contal.ns the ROM version
number.

• Note: If the ID call was made in emulation mode, only the low 8 bits of X. A. and Y
are returned correctly; however, the c bi.tis accurate. Tf the call was made in native
mode, the c b il as well as register information i.s acrurate as shown in Table B-Z and
is returned in fuH 16-bit native mode. The c bit is the carry bit in che processor status

register. If the value rcn.imed in Y is $00, the value in A hould be considered to be
$7F.

Appendix 8: Armware ID Bytes 223

Appendix C

Firmware Entry Points
In Bonk $00

Apple Computer, Inc. will maintain the entry points described w.ilh.i.n chis document
in any future App1e fiGS or Apple II-compal.ibJe machine that Apple produces. No
other entry points will be maintained Use of the entry points in this document will
ensure compatibility with Apple IlGS and future Apple Il-compatlbJc machines. Note
lhar these entry points are specific to Apple ITGS and Apple IIGS-Compatible machines
and do not necessarily apply to Apple Ile or Apple He machines .

As an alternative lO using these entry poinl.'l, note that you can also use the
Miscellaneous Tool Set FWENTRY fi.rmware function.

For all of the routines defin.ed in this chapter, the following delinilions apply:

D A rep.resents the Jower 8 bits of the accumulator.

o B represents the upper S bits of the aCCLJmulator.

o X and Y represent 8-bit index registers.

o DBR represents the data bank register.

o K represents the program bank register.

o P represents the processor status register.

o S represents the processor slack register.

o D rcpresenlS the direct-page register_

o e represents the emulation-mode bit

o c represents the carry flag.

o ? repre 'ent.s a value that Is undefined

224

Warnln

For aJJ of the routlnes in this appendix. the follow!ng environment variables must
be set 'With the values shown here:

c The e bit must be set to 1 .

o The decimal mode must be set to 0.

o K must be sat to $00.

o D must be set to SCOJO.

:i DBR mwt be· set to $00.

FoUowing arc descriptions of the firmware routines supported as entry points in
ament and future models of the Apple Il family, starting with the Apple HGS.

SF800 P'LOT PJot on the low-resolution screen only.

PLOT puts a single block of the color value sel by SETCOL on die
low-re.'lolution display screen.

Input A = Block's vertical position {0-S2f)
X • ?
Y = Block's horizontal position (0- S27)

Output Unchanged = X/Y/ DBR/K/D/ e
Scrambled - A/B/P

SF80E :PLOTl Modiry block on lhe low-resolution screen only.

PLOT puts a single block of di cok1r value sel. by SETCOL on I.he
]ow-resolution dispfay screen. 'Ibe block i.s plotted al current settings of
GBASIJGBASH w[lh currenl COLOR and MASK seLtings ,

Input

Output

A=?
x =?
Y = Block's horizontal position (0-527)

Unchanged = X/Y / DBR/K/D/e
Scrambled = A/B/ P

Appendix C: Firmware Enhy Points in Bank $00 225

l-'819 BLINE Draw a horizontat line of bfocks on low-resolution screen
only.

[lLtNE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics dispJay.

Io put A • Block's vertkal position CO 2F)
X=?
Y "' Block' tcftmost horizoma I position (0-.$27)

H2 = (Add.re = S2C); block's rightmost horizontal position
(0-$27)

Output Unchanged = XJDBR/K/D/e
Sera mbled • A/Y !BIP

$F828 VLINE Draw a: vertical line of blocks on the low-resolution screen

SF832

only.

VUNE draws a vertical line of blocks of the color set by SETCOI. on I.he
low-resolution display.

Input A= Block's wp vertical position (0"" 2F)
x""?
Y = Block's horizontal position (0 27)

Y2 = (Addrc = $2D)i block's bottom vertical position (0-$2F)

Output Unchanged= X/DDRIK!D/ e
Scrambled • A/Y/B/P

CLRSCR Clear 1.he low-resolution screen only.

CLRSCR clears lhe low-resolution graphics display lO black [f CLRSCR is
called while lhe video display is in text mode, it fills the sere n willi inverse
at sign (@) characters.

Input A=?
x ='
y B?

Output Unchanged = X/DBR/K/D/ e
SCnJmbled • A/Y/B/P

226 Appendlx C: Firmware En ry Points In Bonk SOO

$F836 CLRTOP Ctear the lop 40 lines of the low-resoluLion screen only.

CLRTO P dears lhe top 0 lines of I.he low-resolution graphics display (in
mixed mode, clears the graphic.'> portion of the screen to black)_

Input A= ?
x =?
y ;;; ?

OUtput Unchanged • X/DBR/ K/D /e
Scrambted = AIY / B/ P

SF847 GBASCALC Calculate base address for low-resolution graphics only.

GBASCALC calculates the base address of the line on which a particular
pixel is to be plotte d .

Input A = Vertical line to find address for (0- $2F)
x =?
y = ?

Output, Unchanged = X/Y/DBR/K,/D/e
Scramble d • B/P
Special = A= GBASL

SF85F NXTCOL Increment color by 3.

1'.0CfCOL adds 3 lo the current color (set by S.ETCOI..) used for low-resolution
graphics.

Input A • ?

Output

x = ?
y . ?

Unchanged • XIY/ DBIVK/D/e
Scrambled= B/P
Special= A= New coior in high or low nibble

Appendix C: Firmware Entry Points In Bank $00 227

F871

SETCOL Set low-resolution graphics color.

SETCOL sets the color used for plotting in low-re olur.ion graphics. The
colors arc as follow: :

$0 = Black
$1 • Deep red
$ 2 "' Dark blue
$3 =Purple
$4 = Dark green
$5 • Da!k gray
$6 = Medlum blue
$7 = Light blue
$8 • Brown
9 =Orange

$A = Light gray
S.B • Pink
C =-Light ween

SD-= Yellow
$E • Aquamarine
$F =White

Input A = Low nibble • new coior to use; rugh nibbl doesn't matter
x""?
y - ?

Output Unchanged = X/Y/ DBR/K/D/ e
Scrambled = B/P
Special"" A • ew color in high or low rubble

Read lhe Low-resolution graphics o •en only.

SCRN returns the color value of a single block on the low-resolution graphics
display. Call it with the verticaJ position of I.he block in the aca.unulaLor and
horizontal position in the Y register.

Input

Output

A = Vertical line to find addr for (0-$2F)
x . ?
y =?

Unchanged = X/Y / DBR/K/D/ e
Scrambled -= B/ P
Special • A • Color of block specified. in low nibble;

high nibble • 0

228 Appendix C: Flrmwo:re EnfTy Points In Bonk SOO

$F88C INSDSl.2 Perform LOA (PCL,X); then faU into lNSDS2.

lNSDSl.2 gets r.he opcode [O dei:errnine me instruction length o f w[th an IDA
(PCL,X) and falls into INSDS2.

Input

Output

A=?
X • Offset inm buffeli' at pointer PCUPCH
Y •?

PCH = (Addrc.:ss $3B) high byre: of buffer adcfr;ess w get opcode
from in bank $00

PCL =(Address = $3A) Iow byte of buffer address w set opcode
from in. bank .$00

Unchanged • DBR/K/D/e
Scrambled = A/XJB/ P
Special = Y "' $00

LENGTH (address= $2F); contains instruction length 1
of 6502 instruot.ions or"" $00 if not a 6502 opcode

$F88E l SDSZ Calculate length of 6502 hris1ruction.

INSDS:Z determine the length] of the 6502 instruction denoted by I.he
opcode appearing in the A register.

1NSDS2 returns correct jnstruction length 1 of 6502 opcodes only. All non-
650>2 opcodes l'etum a Jength of $00. For compatibility reasons, 1he BRK
opcode returns a length of $00, not $01 as one wouJd expect it to.

.lo put A • Opcode for which length is lO be determined
x =?
Y•i'

Output Unchanged= DBR/K/D/e
Scrambled = A/X/B/P
Special "' Y • $00

LENGTH (<iddress = .$2F); coma.ins instruction length 1
of 6502 instructions or= $00 if not a 6502 opcode

Appendli< C: Firmware Entry Potnts In Bank SOO 229

SF890 GET816LEN Cakul:itc Langth of 65C816 instruction.

GET816LEN determines Ille length of I.he 65816 inslruclion denoted by the
opcode appearing in I.he A register. The BRK opcode returns a length of SOl
J.s one would expect il to.

Input

Output

A = Opcode for which length I lO be determined
x . ?
Y=?

Ur.ch:anged DBR/K/D/e
Scrambled = A/X/B/P
Special • Y .. $00

l.ENGTH (ac:!dress • 52F); contains instruction length 1
of 6SC816 instroct.Ions

$FSDO INSTDSP Di~pLay disassembled instruction.

$F940

ST'9<11

lNSTDSP disassembles and dispJays one instruction pointed to by the
program counter PCLJPCH (addresses $3A/S3B) in bank $00.

Input A=?

Output

PRNTYX

x .. ?
y =?

Unchanged = DB11/K/D/e
Scrambled = A/XJY /B/P

Print coni.enlS of Y and X registers in hex formal

PRNTYX prints the contents of lhe Y and X registers as four-digit
hexadecimal values .

Io put

Output

PR.NTAX

A • ?
X = Low hex byte to print
Y =High hex b~e to print

Unchanged = X/Y /DBR/ K/D/ e
Scrambled = A/13/P

Prjnt contents of A and X f\egisters in hex: fonnaL

PRN'IYX prints the conrcms or the and X registers as four-digit
hexadecimal va1ues.

Input

Output

A • High hex byte to prinl
X =Low hex byte to print
y = :>

Unchanged ~ XI\' / DBR/K/D/c
Scrambled = A/B/P

230 Appendix C: Firmware Entry Points In Bonk SOO

$F944 PRNTX Print comenrs of X register in hex format

PRN1YX prints the contents of me X register as a two-digit hexadecimal
value.

lnpuc A=?'

Output

$F9'18 PRBLNK

X .. I lex byte to pr.int
Y=?

Unchanged ... X/Y /DBR/K/D/e
Scrambled = A/DIP

Prinl 3 spaces.

PRBLNK outputs 3 blank paces to the standard output device.

Input A""?

Omput

x = ?
y""?

Unchanged • Y /DBR/K/D/c
Scrambled ~ HIP
Special = X = SOO

A • SAO (space ASCII code)

$F94A PRBL2 Print X number of blank .spaces.

PRBL2 outputs from 1 to 256 blanks to the standard output devic.e.

Input. A=?
X • Number of blanks to print (SOO "' 256 blanks)
y ... ?

Output Unchanged Y /DBlVK/D/e
Sc.ambled = B/P
Special• X = $00

A • $AO (space ASCII code)

Appendix G: Hrmware E:n ry Points In Bank SOD 231

SF953

$F%2

PCADJ Adjust Monitor program counter.

PCADJ increments the program counter by J, 2, 3, or 4, depending on the
LENGTI-I (address S2F) byte; 0 ... add 1 byte, 1 • add 2 bytes, 2 • add 3 byies,
3 = add 4 bytes.

Note: PCIJPCH (addresses $3A/$3B) a.re not dung d by l'.hls caU. The
A/Y regislers contained the new program counter al the end of this call

Input A •?
x =?
y ""?
PCL = (Address $3.A) pr-ogram counter low byte
PCI I = (Address $3B) program counter high byte
LENGTI I = (Address $2F) length l lo add to program counter

Output Unchanged • DBR/KID/ e
Scrambled = X/B/P
Special • A .. New PC.I...

Y= NewPCH
PCVPCH nort changed

TEXT2COPY Enable or DisabJe text Page 2 software.shadowing.

TEXUGOPY lOgle§ the tal rage ~ §Oftw~ll!=§hildo ing function on md
off. 11le first access lo TEXT2COPY enables shadowing, and lhe next access
disables shadowing. When TEXT2COPY is enabled, a heartbeat ~sk is
enabled thal, on every VB.I..., copie,s the information from bank $00
locations $0400 07FF lo bank SEO local.ions $-040~07FF. It lhen enables
VBl. interrupts. VBL Jnrterrupts remain on untll Control-Heset is pressed or
until the system is restarted. TEXTZCOPY can disable lhe copy function,
but cannot disable VBL interrupts onoe they are enabled.

Input A ... ?

Output

X=?

Y •?

Unchanged = DBR/K/D/e
Scrambled • A/X/Y / B/P

232 Appendix C: Firmware Entry Points In Bank $00

$FA40 OLDIRQ Go to emulation-mode interrup -handling routine .

Jumps to the interrupt-handling routines ·c.hat ha.ndl emulation-mode BRKs
and IRQs. AJJ registers arc restored after I.he application performs an RTI at
the end of ilS installed interrupl routines. Localion $45 is nol des.t.rc) cd a.'l in
the Apple II, Apple II Plus, and original Apple Ile cornpulers.

Input A=?
x = ?
y =?

Output Unchanged • A/X/Y/ DBR/P/ B/ K/D/ e
Scrambled ,.. Nmhing

SFA4C BREAK Old 6502 break handJcr.

BREAK saves che 6502 registers and lhe program counter and th.en jumps
incliredl.y through the user hooks at $03F0/$03FL Note lhat lhi · call affe r.s
the 6502 reg_ister.;, not the 65C816 registers . This ena.ry point ls obsolete
except in very ra.rc circumstances.

Input

Output

SFA59 OLDBRK

A "" Assumes A ~ stored al address $4 5
x =?
Y • ?

Unchanged = DBR/K/ D/ e
Special= A511 (address $45) = A value

XR ·G (address S· 6) • X value
YREG (address $47) = Y value
STATUS (address. S48) • P value
SPNT (address. $49) = S stack
Poinler va1ue

New 65C816 break handler.

OLDBRI< prinl5 !.he address of the BRK insrruction, disassemble I.he BRK
instruction, and prints the conlCnli of the 65C..816 register and memory
config11ration at the time the BRK ins1.rucuon was executed.

Input

Output

All 65C816 registers and memory configuration saved by
imerrupl handler

Retums lo Monitor afler di.splaying inform Elon

Appendix C: Rrmwore Entry Points In Bank $ 00 233

$FA62 RESET Hardware reset handler.

RESET ser.s up all necessary warm-start parameters for the Apple IIGS_ It is
called by the 6SC816 reset vector stored in. ROM in locations $FFFC/SFFFD.
If normal warm tart occurs, it then exits through user vectors at
$03F2/ $03F3. If cold start occurs, it then exilS by attempting ro start a startup
device such as a disk drive or AppleTalk, depending on Con:c:rol Panel
settings. If a program JMPs here, it must enter in emu I tion mode with the
direct· pll.ge register set to $0000, the daca bank register set lO 00, and the
program bank register set to $00, or RESET will nOl work.

Input

Output:

SFAA6 PWRUP

K/DBR/0/e • $00

Doesn't return to calling program

System cold.start. routlne.

PWRUP performs a partial system reset and then auemprs lo s-rart lhe system
via a disk drive or AppleTalk. PWRUP aJso zeros out memory in bank 00
from address $0800-$DPFF. lf a program)MPs here, il must enter 1.n
emulation mode, wilh the direct-page re.gisler set to SO O; the data bank
register set co $00, and 1.he program bank register set to $00, or RESfil' will
nol work. If no startup device is available., the message Check Startup
Device appears on i:he screen.

Input

Output

SFABA SLOOP

K!DBR/D/e = $00

Doesn't return to calling program

Disk cone.roller slol search loop.

SLOOP is the disk controller search Joop. [L searches for a dlsk oonuol1er
beginning at. the peripheral ROM spaoo (if RAM: disk, ROM disk, or
AppleTalk has nol been selected via the Conttol Panel as the startup
device) pointed lo by LOCO and LOCI (addresses $00/$01). If a startup
device is found, it]MPs lO that card's ROM space. If no startup device is
found, the message Check Star t up Device appears on the screen. If
RAM disk or ROM disk has been selected, then the firmware }MP· to the
SmartPort code that handles those .startup devices. If slot 7 was selected and.
AppleTalk is enabled in port 7, lhe Firmware]MPs co the ppleTatk boor
code in slot 7.

Input A • ?

Output

X=?
y .. ?
LOCO • (Address $00); must be SOO, or startup will not occur
LOCI = (Address SOl) ~ concains $Cn, where n =next loc

numbe.r to test for a startup device

Doesn'l return to calling program

234 Appendix C : Firmware 'Entry Points. In Bank $00

$FAD7 REGOSP Display comcnlS of regi -tcrs.

REGDSP displays all 6SC816 register contents lored by the firmware and
App.le IlGS memory- .ta'te informallion, including shadowing and system
speed. Displayed values indudc A/X/Y /K/DBR/S/D/P/M/Q/ mh::/ e/L.
A/X/Y/S are alv.rays saved and dispJayed as 16-bit values, even if emulation
mode or 8-bil nali;•e mode is selected.

Ioput A "' ?

Output

5FB19 RTBL

X=?

"' ?

Unchanged "' DBR/K/D/e
crambled - NX/Y /B/P

Regjster names table for 6502 regisrer$ onJy. ..
This]snot a call:able .routine. IL is a fixed ASCil string. The fixed c.ring ·
'AXYPS'. Some routines 1equire this st.ring here, or they will not exeolle
properly. The rnosl significant bit of each ASC.IJ characte i.s set to 1.

Input

Output

S Fl31E PREAD

No input (not a calla.hi routine)

No output (not callable routine)

Read a. hand controller.

PREAD returns a number I.bat represents the position of lhe pecified hand
controller.

Input A=?

Output

HB21 PBEAD4

X • 0, 1, 2, o.r 3 only= Paddle to read
Y=?

Unchanged = X/ DBR/K/D/ e
Scrambled = A/B/P
Special= Y =Paddle count

Check timeout paddle; then read the hand comroller.

PREAD4 verifies that the paddle (hand comroller) is in timeout mode and
th n reads the paddle Lhe same as PREAI) docs, returning a num~r th u
represent<> lh position of lhe sped ied hand controller.

Input A=?

Output

X = 0, 1, 2, or 3 only PaddJe lo read
y =?

Unchanged = X/DBR/ K/D/ e
ScramhJed = .MB/ P
Special = Y • P:addle counc

Appendix C: Firmware En ry Points In Bank soo 235

SFB2F l IT Initialize text screen_

INIT' sets up the screen for full window tli!iplay and leltl Page l.

Input A - ?
X=?
y ?

Output Unchanged= DBR/K/D/e
Scrambled • X/Y /B/P
SpeciaJ =A"' BASL

$fll39 SETTXT Sel text mode.

SETIXT sets screen for full text window, bul docs not force text Page 1.

loput A•?
x =?
y =?

Output Unchanged = DBR/K/D/e
Scrambled • X/Y /B/P
Special = A = BASL

SFIHO SETGR Set graphics mode_

SETGR seu screen for mixed graphics mode and clears the gr phics portion
of the screen. Ir then sets the top of lhe window lo Linc 20 for four tines of text
space below I.he graphics creen.

Input A=?

Output

$ FB4 B SETWND

X •?
y =?

Unchanged DBR/K/D/e
Scrambled = X/Y /B/P
S pecia J • A BA.SL

Set lexl v.indow size.

SE'l\X~ scrn window lo I.he following:

WNDLFT (address = S20) = .$00
WNDWDTI-f (address= $21) = $28/$50 (40/80 columns)
WNDTOP (address $22) A on entry
WNDBTM (address 523) = 518

Input

Ompnt

A • New W')IDTOP
x =?
y =?

Unchanged • X/DBR/K/D/e
Scrambled = Y /B/P
Special= A= BASL

236 Appeooix C: Ffrmware Entry Points In Bank SOO

$FB5 SETWND2 Set tex:t window width and bottom sfae.

SET\.VND2 sets window to the following:

WNDWDTll (address • $21) • $28/$50 (40/80 columns)
WNDBTM (address $23) = $18

loput A=?
X=?
y . ?

Out.put Unchanged -= X/DBR/K/D/e
Scrambled = Y /B/P
Specfa1 • • BASL

SfBSB TABV Vertical lab.

TAB.V srores I.he value in A in CV (add.re $25) and then calculates a new
base add.res for sto.ring data to Lhe screen.

loput A= New vertical position Oine number)
x ... ?
y.,.?

Output Unchanged -= X/DBR/K/D/e
Scrambled ~ Y /B/P
Special "' A == BASL

$rB60 APPLEII Clears screen and displays Apple ncs logo.

APPLEll clears the screen and displays the startup ASCII suing 'Apple UGS'
on the flrst line of the screen.

Input "'?
X=?
y =?

Output Unchanged = X/DBR/K/D/e
Scrambled • AIY /B/P

SFB6F SETPWRC Create power-up byre.

SETPWRC calruJates the ~funny~ complement of the high byte of the RESET
veclor and stores ic at PWREDUP (addre5s S03F4).

Input A • ?
X=?
Y=?

Output Unchanged "' X/Y/ DBR/K/D/e
Scrambled = B!P
Special = A= PWREDUP

Appandbc C : Fl rmwme E nttv Points In Bank $00 23 7

SFB78 VlDWAIT Check for a pause (Conuol-S) request.

VlDWAJT ched<s the keyboard for a Control-S tr It is called with an SSD
(carriage return) in the accumulator. [fa Control-S is found, the system falls
through 10 KBDWAlT. Jf it is not, control is sent co VIDOUT, where the
characcer is printed and the cursor advanced.

Input

Output

$f'll88 KBDWAIT

A = Oulpu t character

x"'?
y =?

Vnchanged .. X/DBR/K/D/e
Scrambled = AIY /B/P

Wait tor a kcyprcss_

KBDWAIT wa..ir.s for a keypres.s. The keyboard is deared (unless the keypress
is a ControJ-C), and then control is sent lo VIDOUT, where t.he character is
primed and lhe cursor advanced.

loput A=?

Output

S FBB3 VERSION

X=?
y . ?

Unchanged .. X/DBR/K/D/e
ScrambJcd = A/Y/B/P

One of the monitor ROM's ma.in identification bytes.

This is not a callable routine. It is a fixed hex value. The fixed value is $06.
Th.is is che identi.11cation byte that indicates whether lhi is an Apple Ue or a
later system. This byte is the same in the Apple Uc, the enhanced Apple lie,
Lhc Apple He, lhe enhanced Apple Ile, and che Apple UGS_

Input

Output

No inpul (noc a callable routine)

No output (nm a callable rouline)

SFBilF ZIDBYTE2 One of the monitor ROM's main identification bytes.

nus is nm a callable routine. lt is a fixed hex value. The fixed value is $00.
This is lhe identification byte that indica tes this is an enhanced Apple Ile or
a later syscem.

Input

Output

No .input (not a callable routine)

No outpul (not a callable routine)

238 Appendix C: Firmware Entry Points In Sank SOO

S FBCO ZlD HY'f'E One of the Monitor ROM's ma[n identification bytes_

This is not a callable routine. It is a flxed hex value_ The fixed value is SEO.
This i5 the identification byte chat indicates this is an enhanced App1e Ile or
a later system.

Input

Output

SFBC] B CALC

No inpuc (not. a callable routine)

No outpUl (not a ca.llable routine)

BASCAlC ·calailaces the base address of the 1ine for !he nexl rexc charo.ccer
on the 40-column screen_ The values c:akulared are siored at BASIJBASH
(addresses $002.8/$0029).

Input

Output

SFBDD BElll

A= Line number lo calwlaw base for
x .. ?
y =?

Unchanged • X)Y /DBR/ K/D/ e
Scrambled = B/P
pedal = A = BASL

Generate user~se1ected bell tone.

BELU generates the user-selected (via tlle Control Panel) bell mne. There
is a delay prior to the tone being genera led lO prevent rapid calls to BELLI
from causing distorted bell sounds.

Io put A • ?

Output

SFBE2 BELLl . 2

X=?
y - ?

Unchanged = X/DBR/K/D/e
Scrambled = A/Bf P
Special • Y • $00

Generate user-selected bell tone.

BELLl.2 generates the user-selected (via 1.he Control Panel) bell 10nc.
There is a d lay prior to the tone being generated to prevent rapid calls to
BELLl . 2 from causing dis[Orted beH sounds.

Input A • ?

Output

x =?
y =?

Unchanged ... X/DBR/K/ D/ e
Scrambled = A/B/ P
Special = Y = $00

Appendix C: Rrmware- Entry Points ln Bank Sao 239

$PBE4 BELL2 Genera.Le user-selected bell tone.

BELL2 genera.Les the user-selected (via the Control Panel) bell lone. There
is a delay p rior lo the tone being gene.raced to prevent rapid calls ro BELL2
from causing distorted bell sounds.

nput

Ou tput

SFBFO STORADV

A,,,,_?
x = 7

y =?

Unchanged = X/DDIVK/D/ e
Scrambled "' A/B/P
pe 'al .. y .. 00

Place a printable character on the screen.

STORADV stores the value in lhe accumulator at the nexl posit.ion in the Lexl
buffer (screen local.ion) and adva.nc s lO the next scrc.-en local.ion position.

IIlp'Ut A = Character to display .in Unc
x"'?

Output

y ~?

Unchanged = X/DBR/K/D/e
Scrambled • AIY /B/P

SFBF4 ADVANCE lncrcmem lh cursor posilion.

ADVANCE advances the cu.rsor by one position. If Lhe cursor is a1 the
window limit, this can issues a carriage return lo go to the next line on the
ere en.

Input A=?

Output

SFBFD VIDOUT

x • ?
y =?

Unchanged = X/DBR/K/D/ e
Scrambled = A/Y /B/P

Place characl r on lhe creen .

VIDOUi sends printable characters Lo STORA.DY. Return , line feed,
forward, reverse space, and so on are sent to the vector of appropriate
special rouljncs.

Input

Output

A= Character to oulpul
x - ?
y =?

Undlan ed • X/DBR/K/D/e
Scrambl d = Y/B/P
Special = A = Output character

2AO Appendix C: Firmware En ry Points ~n Soni< SOO

$FC10 B Backspace.

BS decrements the cursor one position.. If the CUJ'Sor is at th beginning of
lhc window, 1.he horizontal rursor position is sec to the right edge of lhe
window, and I.he routine goe to I.he UP subroutine.

Input A= ?
X=?
y =?

Output Uncha.n ed = X/DBR/KID/e
Scrambled ... AIY /B/P

$FCIA UP Move up a line.

$FC22

UP decremenlS Lhe cursor vertical location by one line unle. s the cursor is
currently on the first line.

Input A""?

Output

x =?
y =?

Unchanged "" X/Y/DBRIK/D/e
Scrambled = A/B/P

Vertical lab.

VTAB loads the value at CV (address $25) into I.he accumulacor and goes to
VTABZ.

Input A = ?

Output

x .. ?
y =?

Unchanged = X/Y /DBR/K/D/·e
ScrambJed "' B/P
Special .,. .. BASL

BASI/BASH (address s 528/529) = New base address

$FC24 VTABZ Vertical tab (altemace entry).

VfABZ uses the value in I.he accumulalor LO u pdar.e the base address used for
storing values i.n the teicl screen buffer.

lnpu.t A = Line to cal01late base ~ddress for
x =?
y . ?

Output Unchanged • XIY IDBR!K/D!e
Scrambled = B/P
Special• A BASL

BAS!JBA5H (addresses $28/$29) = New base address

Appendix C: Flnnwafe Entry Points In Bank $00 241

$FC42 CLREOP Clear to end of page.

LREOP dears l:hc text window from the cursor posjtion to the bottom of the
window.

Input A=?

Output

FC58 HOME

x =?
Y •?

Unchanged • X/DBR/K/D/e
era mbled = A/Y / B/P

Horne cur or and clear to end of page.

HOME moves I.he cursor Lo the top of screen column 0 and then dears from
there [O i..hc bottom of me screen window.

Input A=?

Output

$FC62 CR

x . ?
y A?

Unchanged = X/DBR/K/D/e
Scrambled • A/Y /B/P

Begin a new line.

CR sel.S lhe cursor horizontal posjhon at the lefc dge of the wcndow and then
goes to LF to move to the next line on the screen.

Input A=?

Output

FC66 LF

x .. ?
y =?

Unchanged = X/DBR/K/D/e
Scrambl d "' A/Y IB!P

Line feed.

I.F increments the vertical position of the cursor. Tf the cursor vertical
position is nm past l.he boLtom line, the base address is updated~ otherwise,
the routine goes to SCROLL to scroll the creen.

Input A •?

Output

x =?
y .?

Unchanged .. X/DBR/K/D/e
Scrambled = A1Y /B/P

242 Appendix C: Firmware En ry Poln s In Bonk SOO

$FC70 S ROLL Scroll t.he screen up one line.

SCROLL moves all characters up one line wjlhln the current. l:eX£ window.
The cursor post.ion is maintained.

Input A=?

Output

$FC9C CLREOL

X • ?
y =?

Unchanged = X/DBR/K/D/e
Scrambled A/Y / B/ P

Clear to· end of line.

CLREOL clears a text line rrom the cursor pos[lion lo the righr edge of Lhe
window.

foput

Output

~FCSJE CL.RE.Ql.Z

A .. ?
x =?
y =?

Uncha11ged = X/DBR/ K/D/c
Scrambled = A!Y /B/1>

Clear to end of line.

CLREOLZ clears from Yon the currenl line lo the righL edge or lhe wxr
window.

Input A ?

Output

$FCA8 WAIT

X=?
Y -= Horizon1.al po~ition lO start clearing from

Unchanged = X/ODR/K/D/e
Scrambled = A/Y/ B/P

Delay loop (system-speed independent).

WAIT dela~·s for a specific amount of Lime and lhen reLUms to Lhe program
that called [r. The length of the delay is specified by the c:onrcnt.s of the
, ccumulawr. With A lhc conccnts of the accumuiator, I.he delay is
1/2(26+27A+5A11.2)•14/ H .3I818 microseconds. WAIT should he u.sed as a
minimum delay Lfme, nm as the absoluce delay Ume.

Input

Output

A • ?
x ='
Y=?

Unchanged = XIY /DBR/ K/ D/c
Scrambled = B/P
Special ~ A = SOO

Appendix C: Firmware Entry Points In Bank SOD 243

$PCB4 NX.TA4 Increment pointer ~t A4L/A4H (addresses $42/$43).

NXTA4 increments the 16-bit pointer al A41JA4H and then goes to NXfA1 .

Input A=?
x =?
Y • ?

Output Unchanged = X/Y / DBR/K/D/e
Scrambled "" A/B/ P

SFCBA NXTAl Compare All)AlH (addresses $3C/ S30) with A2l/A2H
(addresses $3E/ $3F) and then jncremenl AllJAlH.

NXTAl performs a 16-bil comparison of AlL/AlH with A2UA2H and
increments the 16-bit pointer AlUA1H.

Input A""?

Output

$FCC9 HEADR

x - ?
Y=?

Unchanged = X/Y /DBR/K/D/ e
Scrambled • A/B/P

Write a header Lo cassette tape (obsolere).

HEADR is an obsolete entry poinc for Lhe Apple IIGS. Jt does nothing except
perform an RTS back to lhe calling routine.

Input A • ?
X=?
y =?

Output Unchanged = A/X/Y/P/B/ DBR/K/D/e

$FDOC RDKEY Get an inpm character and display old inverse flashing
cursor.

RDKEY is a character-input subroutine. ll places the old Apple II inverse
character flashing cursor on the display at the current cursor position and
jumps to subroutine $FD10.

Input A "" ?

Output

x =?
y-=?

Unchanged = X/DBR/K/D/e
Scrambled = Y /B/P
Special "" A • Key pressed (entered character)

244 Appendix C: Firmware Entry Points [n Bank SOO

$FD10 FDlO Get an jnput cN..ract.er and don't display inverse flashing
charac~er cursor.

PD10 i a characler-inpul subroutine. I.t jumps to the subroutine whose
address is stored in KSWL/KSWH (add.res es $38/S39), usually the standard
input subroutine KEYJN, which displays the normaJ rur or and returns with a
character in the accumulator. $FD10 returns onJy after a key has been
pressed or an input character has been placed in the accumula10r .

. Input A = ?
x -?
y =?

Output Unchanged X/DBR/K/D/c
Scrambled • Y/B/P
Special= A= Key pressed (entered character)

SFD18 RD l Gel an input character.

RDKEY1 jumps to the subroutine who e add.re ~ tared in KSWL/KS\\:'H
(addresses $38/$39), usually the standard input subroutine KEYIN, which
returns with a character in th accumulator. RDKEY1 rerurns only after a key
has been pressed or an input character ha.'! been placed in the accumulator.

Input A=?
x =?
y =?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y /B/P
SpcctaJ = A = Key pressed (entered character)

$FD1B KEYIN Read the keyboard.

KEYIN is a keyboa:.rd-jnput subroutine. 1£ tests the Evcnl Manager co see if it
is active. If it is active, KEYIN reads the key pressed from the Event
Manager; ol.herwise, iL reads the Apple keyboard directly. Jn any case, it
randomizes the random-number seed RNDI...IRN"DH (add.re ~es $4E/S4F).
When a key is pressed, KEYIN removes lhe cursor from the display and
renims with the keyoode in I.he accumulator.

Input

Output

A .. Character below cursor
x = ?
Y= ?

Unchanged • X/DBR/K/D/e
Scrambled = Y/B/P
SpeciaJ • A"' Key pressed (enlered character)

Appendix C: Firmware Entry Points in Bank SOD 245

. FD35 RD HAR Get an inpul character and process E$capc codes .

RDKEY is a character-input subroutine; il also interprets the standard
Apple escape sequences. H places an appropria.le cursor on the ~play at
the cursor position and jumps to the subroutine whose address is .stored in
KSWUK WH (addresses $38/.$39), usually the standard input subroutine
KE.YIN, which returns wilh a character in the accumulator. RDCHA~ returns
only after a non-e escape-sequence key has been pressed or an inpul
cha.racter has been placed in the accumulator.

Input A=?

Output

$PD67 G:ETLNZ

X= ?
y = ?

Unchanged = X/DBR/K/D/ e
Scramb1ed .. Y/B/ P
Special = A= Key pressed (entered characlCr)

Get an lnpuc line after issuing a carriage return.

GETLNZ is an alterna te cnl.ry poim for GE'TLN that sends a carriage return to
the standard output and then continues in GETLN. The calling program
must caU GEnN wilh the prompt character al PROMPT (address S33).

loput A=?

Output

:iiFD6A GETLN

x = ?
Y • ?
PROMPT = (Address $33) Prompt character

Unchanged = DBR/K/D/e
Scrambled "' A/Y / B/P
Special= $200-$2xx coma.ins inpul line

X • Length of kl.put line

Get an input line with a prompl.

GETLN is a standard input subroutine for entire lines of c:h.aracters. The
calling program must call GETI.N with the prompt character at PROMPT
(address $33).

Input

Output

A ... ?
x""?
y =?

PROMPT = (Address $33) • Prompt character

Unchanged = DBR/K/ D/e

Scrnmbled = A!Y /B/P
Special= $200-$2xx contains inpul line

X • Lengl.h of inpuc line

246 Ap pendix C: Firmware Entry Polnts In Bank SOO

$FD6C G TLNO Get an input line with a prompt (alternate entry) .

GETLNO outputs the contents of the acrumu1amr as the prompt. Tf the user
cancels the input line with Control-X or by entering too many backspace.~,
the contents of PROMPT (address $33) will be Issued as the prompt when it
gelS another line.

Input

Output

SFD6F GETLNt

A • prompl character
x . ?
y = ~

PROMPT = (Address $33) = Prompl characLer

Unchanged • DBR/K/D/ e
Scrambled = A/Y /B/P
Special = $200-52xx contains input line

X = length of input line

Get an inpul line wilh no prompt (altcmacc entry).

GETI.Nl Is an alternate entry point for GETLN that does not Issue a prompt
before iL accepts the input Linc. If the user cancels the inpul line with
Conrrol-X or by entering too many backspaces, the contents of PROMPT
(address $33) wiU be issued as the prompt when it gets another line.

Input

Output

$FD8B CROUTl

A=?
x =?
Y=?
PROMPT • (Address $33) = Promp1 character

Unchanged = DBR/K/D/ e
crambled • A/Y/ B/ P

Special = $200-$2x:x conrains input Une
X • Length of input line

Clear to end on Une~ then issue a carriage re lurn.

CROUTI dears lhe current line from lhc current cursor pos[lion to the right
edge of the text window. Jl then goes lo CROUT to issue a carriage return.

Input

Output

A=?
x =?
Y=?

Unchanged = X/DBR/ K/D/ e
Scrambled = Y /ll/P
Special • A • $80 (carriage return)

Appendix C: Rrmwore Entry Points In Bank $00 247

· FDSE CROUT I sue a carriage return.

CROUT issues a carriage return to the output device pointed to by
CSWL/CSWH (addresses $36/537) .

Input A • ?
x = ?
y.,,?

Output Unchanged • X/Y / DBR!K/D/e
Scrambled= B/ P
peciaJ = A • $BD (carrjage return)

$FD92 PRAl Print carriage return and AlL/AlH (addresses $3C/$3D).

PRAl sends a ca.rriage rerurn character ($SD) to I.he current output device,
followed by che contents of lhe 16-bit pointer AllJAlH (addresses
($3C/$3D) in hex, followed by a colon (:).

Input A=?
x-?
y =?

Output Unchanged• DBR/ K/D/ e
Scrambled = X/B/P
Special • A • BA (colon)

Y= $00

"FDDA P.RBYrE Print a hexadecimal byte.

PRBYTE outputs the contents of the accumulator in hexadecimal format lo

the cu.rrem output device.

Input A= Hex byte to prim
X • ?
y =?

Output Unchanged = XIY / DBRIK/D/e
Scrambled = A/B/ P

$FDE3 PRHEX Print a hexadecimal digit

PRHEX oucputs the lower nibble of the accumulacor as a ingle hexadecimal
digit lo the current output device ,

Input Ac. l.ower nibble is digit lo aurput
x - ?
Y=°1

Output Unchanged • X/Y / DBR/K(D/ e
Scrambled = A/B/ P

248 Appendix C: Firmware :Entry Points. In Bank SOO

$FDED COUT Outpul a character.

COUT caJls the current output ubroutine. The ch3.racter to outpur should be
In the accumulator. oour caUs the subroutine whose address is tored in
CSWlJCSWH (addresses $36/$37), which is usually the standard character­
outpuc :roullne COUTt .

Input "" Charac~er to print
x =?
y =?

Output Unchanged = A/XIY/ DBR/K/D/ e
Scrambled • B/P

$FDFO COUTl Output a character to the .screen.

COUTl displays the cha.racier in I.he accumulator on the Apple creen at Lhe
current out.put cursor position and advances the output cursor. 11: places the
character using the settings of ilie normal/inverse location TNVFLG (address
$32). It handles lhc conLrol characlers for return ($80), line feed (SBC),
Backspace/Left Arrow (SSS), Right Arrow ($95), and bell ($87) and the
Change Cu.rsor command (Conlrol-" "' S9E).

Input A =Characte r co print
x . ?
y =?

Output Unchanged .. AIXIY / DBR/K/D/e
Scrambled= B/P

SFDF6 COUTZ Output a character lO the screen wilhout masking it wilh I.he
Inverse nag.

courz outputs the c:haracl.er in the accumulator without masking il wllh I.he
inverse flag INVFLG (address $32). Output goes to I.he .screen.

lnpu t A = Characler lO print
X=?
Y=?

Output Unchanged "' AJX/Y/DBlVK/ D/ e
Scrambled = B/P

Appendix C: Firmware Entry Points In Bank Sao 249

~FElF IDROUTINE Returns identification information about the 5ystem.

!DROUTL"JE is calJed wilh c (carry) et If il returns with c (carry) clear, lhen
lhe system is an Appl IlGS or a later SY5lem, and lhc registers A/X/Y
contain idemification informalion abouL I.he system.

Inpu·t A= ?

Output

fE2C MOVE

x .. ?
Y • 7

Unchanged = DBR/K/D/e
Scr:ambled = B/P
Special c (carry) = O if Apple IICS or later. If c = 0, lhcn AIX/Y

contain identificalion information. If c = 1, then
A/XJY are unchanged.

Origmal Monicor Move routine.

MOVE copies the contenL'> of memory from one range or locations lo
another. This subroutine is no.l l:he same as the Monitor Move (M)
command. The destination addre:s:s rnus1 be in A41)A4H (addr·esses
$42/$43), the starti ng source address in A 1IJA1 n (adclres.ses $3C/$30),
a.nd the ending source address in A2UA2H (addresses S3E/$3F) when
MOVE is cal1ed Y mu r conta in the starting offset into the
source/destination buffers.

Input A =?

Output

SFE5E " I T"

x.?
Y = tarting offset into saurce/desLinaLion buffers (norm.ally

$00)
A 1LJA1 H = (Addresses S3C/S3D) • Start of source buffer
A2LIA2H = CJ\.ddresses $3E/$3F) = End of source buffer
A4lJA4H (Address.es $42/$43) = Searl or destination

buffer

Uncha nged = X/Y/DBR/K/D/e
Scrambled = A/B/P
Special• A1 L/A1H =(Addresses $3C/S30) =End of source

buITer + 1
A2lJA2H = (Addresses S3E/$3f) =End of source
bu ffer
A4 lJ A4H = (Addresses $42/$43) = End of destination
buffer+ 1

Old Ii l enu-y point (not supported under Apple UGS).

250 Appendix C: Rrmwore Entry Points In Bank $00

SFEBO SETINV Set inverse text mode.

$FE84

Sf'Tl1W sets lNVFLJG (address $32) so that subsequent tcxt output to the
screen will appear .in inverse mode.

Input A=?
x""?
y =?

Output Unchanged • A/X/DBR/K/ D/e
S cramblc d = Y / B/ P

TN ORM

Special • INVfLG (address $32) = $3F
Y = S3F

Set normal lext mode.

ETNORM sets Il\VPLG (address $32) so that subsequent 1text output to the
screen will appeal" [n normal rnode.

Input A=?

Output

x - ?
Y=?

Unchanged "' A/X/DBR/K/D/e
Scram bled = Y /B/P
Specia~ = INVFLG (address $32) • $Pf

y =$FF

SFE89 SETKBD Re5et inpul to keyboard.

SETKBD resets inpul hooks KSW'L/KSWH (addresses $38/$39) to poim lo

the keyboard.

Input A .. ?
x . ?
Y=?

Output Unchanged "' DBR/K/D/e
Scramb1cd = A/X/Y/B/ P

SfE8B ll'ITORT Reset input to a slot.

LWORT re.sets input hooks KSWl.IKSWU (addresses S38/$39') to po.int to UP
ROM space reserved for a peripheral aud (or porO in lhe slot (or port)
de. igmned by the value in the accumulator.

Input A • Slot number to set hooks to
x =?
y . ?

Output Unchanged = DBR/K/0/ c
Scrambled • A/X/Y / B/P

Appendix C: Firmware Entiy Points In Bank $00 251

$FE93 SETVID Resel output lo screen.

SE'fVID reselS output hooks CSWI)CS'WH (addresses $36/ $37) lO the scr,een
display routines.

loput A=?
x =?
y =?

Output Unchanged "" DBR/K/D/ e
Scrambled • AIX/Y / B/ P

.'ti E95 OUTPORT Reset output to a lot

OUTPORT resets output hook CSWUCSWH (addresses S36/S37) to point to
che ROM space resc:rvcd for a periphera.I card (or po.rt) in the slol (or port)
designated by lhe value in the accu.rnu.lalor.

Output

A ~ Slot number to ITeset. hooks m
x =.,.
Y • ?

Unchanged • DBR/K/D/e
Scrambled = A/X/Y /B/P

SFEB6 GO Original App"le n Go entry point.

GO begins execution or the cod pointed to by A11)A1L (addresses
$3C/$3D).

Input

Ou:tput

A=?
X = SO l (required)
y "'-?
Al UAlH (addresses $3C/.$3D) = Start address of program to

run
ASH (addre.ss $45) • value [O set up before running program
XREG (addres .$46) = X value ~o set up before running program
YREG (adctr.ess $47) = Y value to set up before runni~g program
STKfUS (address $48)"" P status to set up before running

prngram

Unchanged • DBR/ K/D/e
ScrambJed ; A/XJY / B/ P

252 Appendix C: Firmware Entry Points In Bank. $00

$FECD RITE Wri.te a record to casscuc tape (obsolete).

WRITE is an obsolete entry poinl under Apple 11.G . It does nothing except
perform an RTS back co the calling routine.

Input. A.,.?

Output

X=?
y . ?

Unchanged = A/X/Y/P/BDBR/ K/D/e

$rEPD READ Read data from a cassette tape (obsolete).

READ is an obsolete entry point under Apple IICS. U does nothing except
perform a.n RTS back to the calling routine.

Input A=?

Output

S FF2 D PRf.RR

X-?
y =?

Unchanged NX!Y / V/B/ DBR/ K/D/c

Prim ERR on output device.

PRERR sends ERR to the output de,.rice and goes m DELL.

Input A=?
x . ?
Y=?

Output Unchanged = XJY / DBR/K/ D/ e
crambled • B/P

Special =A = $87 (bell characlel')

$FF3A BELL Send a belJ character co lhe oulpul device.

BE.LL wrires a bell (Control-G) character to Lhe currenr output device.

Input A=?

Output

x = 1

Y • ?

Unchanged = X/Y/ DBR/K/D/e
Scrambled = B/ P
Special = A = $87 (bell character)

Appendix C: Firmware Entrv Points ln Bank Soo 253

$FF3F RESTORE Restore A/X/Y/P registers.

Restore 6S02 register informal.ion from locations $45-$48.

Input A=?

Output

x .. ?
Y= ~
ASH (address $45) = New value for A
XREG (address · 46) = New value for X
YREG (address 5 7) • New value for Y
STATUS (aid~ $48) = New value for P

Unchanged = DBR/K/D/ e
Scrambled "' B
Special = A = New value

• New value
Y=NewvaJue
P=Newvalue

$Ff4A SAVE Save A/X/Y/P/S registers and clear decimaJ mode.

FF58

SA VE saves 6502 register information in locations $45 49 nd dear
decicnal mode.

Input A=?
x - ?
y = ?

Output Unchanged = Y/DBRIK/D/e
Scrambled .. A/X/ll/P

IORTS

Special= ASH (address $45) =Value or A
XREG (address $46) = Value of X
YREG (address $47) • Value of Y
STATIJS (address 48) =Value of P

PNT (address $49) = Value of tack pointer 2
Decimal mode is cleared.

Known RTS instruction.

10RTS is used by peripheral ca rds to determine which slot a card is in. This
RTS is fixed and will never be rnang d

Input A=.,
x =?
Y • ?

Output Unchanged = A/X/Y /DBR/K/D/e
Scrambled .. Nothing

254 Appendix C: Firmware Entry Points In Bank SOO

SFF59

SFF65

$FF69

$ff6C

OLDRST Old Monitor enuy point.

OlDRST sets up lhe video display and keyboard as ouLpt1l and input devices.
It sets he mode, docs nor beep, and enters the Monitor al MONZ2. It does
nol rcrurn to caller. All Monitor 6SC816 rcgiscer storage locatioru are reset
to standard value .

Input A

Output

ON

x =?
y =?

Does not reUJm Lo c:allc•

Slandard Monitor enLry point, with beep.

MON dears decimal mode, beeps bell, and enter the Monitor at MON7..
All Monjtar 65816 register storage locations are reset to st.indard values.

Input A=?

Output

MO Z

x =?
Y=?

Does not return to caller

Standard M oni Lor entry point (Call -151).

All Monitor 65816 regisrer storage locations are resec to standard values.
MONZ rusplays lhe * prompt and sends conrrol to chc 1\1onitor input
parser.

lnplll A=?

Output

x - ?
y =?

Does not return lo caller

MO Z2 Standard Monitor entry point (alLCrnatc),

MONZ2 does not change Morutor 65816 register storage locaLians. MONZ2
displays rhc * prompt and sends control lo lhe Monitor input parser.

Input

Output

A=?
x . ?
Y= ~

Doos not rcrurn lo caller

Appendix C : Rrmwara Entry Points In Bank SOO 255

$PF70 MONZ4 No prompt Monitor entry point

MONZ.it doe..~ not change Monitor 65816 register [()rage locations. No
prompt is displayed. Control is sent to the Monitor input parser.

Input. A=?

Output

X=?
Y • ?

Does not return to caller

SFFSA DIG Shift hex digil into A21/A2H (addresses $3E/ $3F).

DIG shifts an ASCII represent:uJon of a hex digit in the accumulator into
A2IJA2H (address.es 3E/S3f) and the exits into NXTCHR.

Input

Output

$fFA 7 GETNUM

A = ASCII characEer EORed with $BO
x - ?
Y = Entry point in input buffer $2xx at which to continue

decoding characters

Unchanged = DBR/K/D/ c
Scrambled = A/BIP/X
Special • Y ~ Points to next character in inpul buffer at $2xx

Transfer hex input .into A21/A2H (addr•esses $3E/$3F).

GETNUM scans the input buffer ($2xx) srarting al position Y. It shifts hex
digits into A2I.JA2H (addresses $3E/$3F) until h encounters a nonhex digtl~
It Lhen exits into NXTCHR

lnput

Output

A - ?
x =?
Y = Entry poinl In input buffer $2xx al which to st.an decoding

chara.cters

Unchanged = DBR/K/D/ c
Scrambled • A/B/P/X
SpeciaJ = Y =Points to next characler in input buffer at SZxx

256 Appendix C: Firmware Entry Points in Bank $00

SFFAD NXTCHK Trarn1ate nexl character.

NXICHR i.s the loop used by GETNUM to parse each character in I.he inpuc
b uffer and convert it lo ai value in A2L/A2H (:add11ess S3E/ $3F). Il also
u pshlns any lowercase ASCil values cha.t appear in the input buffer (addresses
$.Zxx) .

Input A=?
x =?
Y = Emry point in jnpm buffer S2xx a~ which to start decoding

cha mete.rs

Output Uncha nged "" DBR/K/ D/ e
Scrambled • A/B/P/X
Speci:11I = Y = Poi.nts to nexl ch.aracler in input buffer al $2.xK

SFFBE TOSUB Transfer" control ro a Monicor function .

TO SUB pushes an execution address onto the stack and then performs w
RTS to the routine. U is of very 1imJEed we to any program_

Input. A=?
x .. ?
y =Offset into 5Ubroutine cable

Out pu1t Unchanged .. DBR!K/D/e
Scrambled = AJB/ P/X/Y

$FFC7 ZMODE Zem out Monitor's mode byte MO MODE (address $31).

ZMDDE zeroes om MON1\10DE (address S31).

Input A • ?
x = ?
y . ?

Output Unch;;m8ed • A/X/DBR/K/ D/ e
Scrambled =, P / Il
Special • Y • SOO

Appandfx e: firmware tnhy Poinfs In Bank Sot'.l ~57

Appendix D

Vectors

11lis appendix lists Lhe Apple !IC vectors. A vector ls usually either a 2-byte address in
page $00 or (possibly) a 4Abyte jump instruction ma dillercnt bank of memory.
Vcc:Lors are used to ensure a common interface point between exterru.lly developed
programs and syslcm-resident routines. External sofrware jumps dJrectly or indirectly
through 1..hcsc vectors instead of attempting co lo ate and jump directly to the routines
Lhem..,elves. ~'hen a new ver ion of the system is released, I.he vector contents change,
thereby majntaining system integrity.

For all of the vectors defined in this chapter, lhe following definitions apply:
o A represents the lower 8 bits of the accumulaLor.

IJ B represents c.he upper 8 bits of che acwmulator.

c X and Y represent 8-bil index registers.

L., DBH represents the data bank register.
h.. rcprcscnLc; Lhe program bank register.

Cl P represents the proce :mr .status register_

o S represents the processor stack register.

D D represents the direct-page rcgisrer.

c e rcpresenr.s lhe emulation~mode bit.

w c represents the cany flag.

:J v represents the overnow flag.

o ? represents a value r.hat is undefined.

258

Bank $00 page 3 vectors
S03F0-503F l

S03F2-$03F3

S03F4

S03FS-$03F6 3F7

S03F8-$03F9- $3F A

S03FB-S03FC- S3FD

S03FE-$03FF

BRKV User BRK vcccor.

Address of subroutine that hand.Jes BRK interrupts . ormaBy
points to OLDBRK (address SFA59) in Monilor ROM.

SOFTEV User ofl-enc.ry vector for RESET.

Address of ubroutine that handles warm slart (RESET
pressed). NormaUy palms Lo BASTC or operating system.

PWREDUP EOR of high byte of OFfEV address .

PWREDUP = SOFf'EV + 1 EORed with constant $AS. If
PWREDUP docs nol equal SOFTEV + 1 ORed wilh consra..nt
$AS, system performs cold stare. lf PWREDUP equals
SOFTEV + 1 EORed with constant $A5, system performs warm
start

AMP V Applesoft & JMP vector.

Address of subroutine thaL handles Applesoft & (ampersand)
command! . Normally points to IORTS (address FASS) in
Monjlor. Address $03F5 contain a JMP ($4C) opcode.

U RADR User Control-Y nd Applesoft.
USR function JMP vector.

Address of subroutine that handles user Control-Y and
Applcsofl USR function commanru. Normally points to MON
(address $FF65) in Monilor; points to BASIC.SYSlT:..M warm­
start address if ProOOS 8 is loaded Address $03F8 contains a
JMP (MC) opcode.

NMI User NMI vector.

Address of subroutine that O(X!tating systems or applications
can change lo gain access lo NMJ interrupts. Normally points
to OLDRST (address SFF59) in Monitor ROM or to operating
ystem if one is loaded. Address $03FB conlains a JMP ($4C)

opcode.

JRQLOC User IRQ vector.

Address of subroutine t.hac operating systems or applications
can change to gain access to IRQ interrupts. Normally points
to MON (address $FF65) in Monitor ROM r lO operating
system if one is loaded.

Bank $00 page 3 vectors 259

Bank $00 page C3 routines
$C311 AUXMOVE Move data blocks between main and

auxiliary 48K memory.

AUXMOVE is used by the Apple Ile and Apple lie to move
data. blocks between main and auxiliary memory. F'or
compaubility reasons, Apple UGS also supports this entry
point if fue 80-column firmware is enabled via lhe Control
Panel.

Inpu t A a?
X = ?
y =?
c = 1 ""' Move from main lo auxiliary memory
c = 0 = Move from auxiliary to main memory
A1L • (Address $3CJ~ source tarting address,

low-order byte
AlH =(Address $3D); source starting address ,

high-order byte
A2L = (Address $3E); source ending address,

1ow-ordcr byte
A2H .. (Address $3F); source ending address,

hJgh-order byte
A4L .. (Address S42); destination starting

address, low-order byte
A4H = (Address $43); destination starting

address, high~orde r byte

Outpu t Unchanged = A!XIY /DBR/K/ D/e
Changed • B/P
All/Al H = (Addresses $3C/$3D)=l6-bic source

ending address + 1
A21/A2H .,, (Addresses $3F./$3F)• J6-bit source

ending a ddrcss
A41JA4H = (Addresses $42/$43)=16-bil originaJ

destination address + number of
bytes moved + 1

260 Appendix D: Vectors

SC31!4 XFER Transfer program control between main
and auxiliary 48K memory.

XFER is used by the Apple He and Apple Uc to transfer control
between main and au.xili:uy memory. For compatibility
reasons, the Apple llGS also supportS this entry point lithe
80-column firmware is enabled via the Comrol Panel. XFER
assumes Lhat the programmer has saved the current stack
pointer al. $0100 in auxiliary memory and che alternate stack
pointer at 50101 in auxiliary memory befor calling XFER and
restore.5 lhem after regaining control. Failure to rei;.core lhcsc
pointers causes program errors and incorrect interrupt
handlin~ .

Input A .. ?
x =?
Y •?

Output

c = 1 = Transrer coni:ro1 from main co auxiliary
memo.ry

c • 0 =Transfer control from auxi1iary to main
memory

v - 1 • Use page rero and tack in auxiliary
memory

v = 0 = Use page zero and stack in main memory
S03ED "" Program starting addres , low-order

byte
S03EE "' Program tarting address, high-order

byte

Unchanged .. A/X/Y /DBR/K/D/c
Changed = B/P

Bonk $00 page C3 routlrws 261

Bank $00 page Fx vectors
. FFE4-$ffES

SFFE6-$ffE7

$FYE $FFE9

SFFEA-$FFEB

FFEE-SFFEF

NCOP Native-mode COP vector.

This is not a callable routine. IL is a 16-bit value Lhat change.s
with each ROM release. Ifs value is not guaranteed No
program should use this value. This vcccor is pulled from
the ROM and used whenever a na.Live-modc COP is executed.

NBRF.AK Natlve~rnode BRK vector.

This is not a callable routine. It is a 16-bit value L.hal changes
with each ROM release. hs value is not guaranteed No
program hould use this value. 11lis vector is pulled from the
ROM and used whenever a native-mode BllK is executed.

NAB RT Native-mode ABORT vcc:tor.

Titis is not a callable routine . It is a 16-btl value that changes
w.ilh each ROM release. Jts value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a naLive-mode ABORT is executed.

NNMI Native-mod NMJ vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. llS value is nm guaranteed. No
program should use I.his value. This vector 1s pulled from the
ROM and used whenever a native-mode NMJ ls executed.

NIRQ Nalive-modc IRQ veclOr.

This is not a callable routine. It is a 16-bfl value that changes
with each ROM release. IIS value is not guaranteed No
program should use this value. This vector is pulled from lhc
ROM and used whenever a native-mode IRQ is executed.

262 Appendix D: Vectors

SFFF4-$iPFF5

$FFFS-~ FF9

srrrA- $FFFB

$FFrC- .$FFFD

SFFFE-$F.PFF

ECOP Emulalion-mode COP vector_

This i noL a callable routine. Il is a 16-bit value Lhat changes
wil.h each ROM rele:ase. hs value is not guaranteed. No
prog:ram should use this vdue. Thi vector i pulled from the
ROM and used whenever an emulation-mode COP is
execulcd.

EAEORT mulatlon-modc ABORT vector.

This is not a callable routine. Tt rs a 16-bit value chat changes
with each ROM release. Its value f.s not guaranteed. No
program hou1d use this value. This vector is pulled frnrn lhe
ROM and used whenever an emu1alion-mode ABORT is
executed.

ENMI Emulation-mode NMI vector.

This is nol a callable routine. Jt is a 16-bit vaJu • lhat dianges
wtth each ROM release. Its value is nol guaranteed. No
program should use th.is value. This vector i puJled from lhe
ROM and used whenever an emulation-mode NMI is
executed.

ERE.SET RESET vector.

Th.is is not a callable routine. J[i.'> a 16-bit value Lhat changes
"ilh each ROM re1ease. Its value is not guaranteed No
program should use this value. Th.is '!rector i pulled from the
KOM and used whcnc\l'Cr a RESET is executed

EBRKIRQ Emu'lation-mode BRK/ JRQ vector.

This is noL a callable routine , ll is a 16-bil value that changes
with each ROM relea.se. lt.'i value is not guaranteed No
program should use chi value. 11lis vector is pulled frorn th
ROM and used whenever an ernuloation-mode BRK or lRQ is
execuled.

Bank SOO page Fx vectors 263

Bank $ E 1 vectors
lhe vectors DlSPATCHl through SYSMGRV are guaranteed to be i.n the given
locations in this and all future Apple UGS-mmpalible machines.

$El / 0000-0003

$El/0004-0007

$El/ 0008--000B

$ E l / OOOC-OOOF

$El / OOI0-0013

DISPATCHl Jump to tool locator entry type 1.

Unconditional jump to tool locator cnlry type J • JSL frnm
user's code directly to the tool locator urith this entry poinl
The form of the call in memory is as follows:

JMP abslong CS5C/low byte/high bycelbank byte)

DISPATCH2 Jump to tool locator entry type 2.

Unconditional jump to too] locator entry type 2, JSL to a JSL
from user's code to the tool locator with this enuy point The
forrn of lhe call in memory is as follow :

]MP abslong ($5C/low byte/high byte/bank byte)

UDI PATCHl Jump to tool locator entry type L

Unoond.itional jump to user-installed tool locator enl.Cy Lype

L JSL from user's code dirccUy lo the user-installed tool
locator wiih this enLry po[nl. The form of che cal] in memo.ry
I as follows:

)MP abslong ($5C/low byte/high byte/bank byte)

UDIS·PAICH2 Jump to tool local.Or entry type 2.

Unconditional jump to user-inslalled tool locuo.r entry type
2. JSI. lO a JSL from user's code to the user-installed tool
locator with this entry point. The form of the call in memory
is as follows:

)MP abslong ($5C/low byte/high byte/bank byte)

INTMGRV Jump to system interrupt manager.

Unconditional jrump to the main system interrupt manager.
If the application patches out this vector, the application
must be able to handle aU interrupts in lhe same fashion
as the built-in ROM interrupt manager. Otherwise, the system
will nOl, in most drcum.c;tances, run. 'Jbe form of the call
in memory ls as foUoV1S:

JMP abslong ($SC/low byte/high byte/bank byte)

264 Appendix D: Vectors

SF1/0014-00l7

$EV0018- 001B

$El/00IC-001P

COPMGRV Jump lO COP manager.

Unc;ondilional jump to COP (coprocessor) manager.
Currently points to code th:at causes lh Monitor to print a
COP in"ll'Ucl.ion di assembly, similar to 'the BRK
disa scmbly. Th forrn of I.he call jn rnemocy is as follows:

JMP abslong ($SC/low yte/high byre/bank byte)

ABORTMGRV Jump lo abort manager.

Unconditional jump co abort manager. Currently points to
code thal causes I.he Monitor LO prinL Lhe disassembly of lhe
instruction being exiecuted, simHar to the BRK di.~:as.~embly.
The form of the call in memory is as follows;

)MP abslong ($ 5C/low byte/high byte/bank byte)

SYSDMGRV Jump to sys~cm failur·e manager.

Unconditional jump to the systtem fai.lure manage.r. This
call assumes the followins;

o Entry rs in 16-bil native mode.
o c {carry) = 0 if user-defined message is pointed to on stack;

c "' I if the default value is used
D The stack is scl up as foJlows.;

9 ,S = E.rror high byte
8,S = Error low bylc
7,S = Null byte of mess-age address
6,S • Bank byte of message address
5,S = High byl.e of me.5Sage address
4,S • Low byte of message address
3, =Unused return address
2, = Unused rcn.un address
1,S • Unused return address

The form of I.he call in memory i.s as follows:

]MP abslong (SSC/low b~rte/high byte/bank byte)

Bank SEl vectors 265

IRQ.APTALK and IRQ.SERIAL vectors
Vcclors IRQ.APT ALK and IRQ.SERIAL are normally set up to poinl to I.he internal
interrupt handler or to code that sets carry and then performs an RTI back to the
imctrupl man ger. All the routines .re called in 8-bil nalive mode and aL hjgh speed.
·The data bank register, the direct register, MSLOT ($7F8), and the srack poimc.r arc
noc preset or set as for other interrupt vectors. The called routine must return carry
clear if the routine handled the Interrupt and e<trry s.el if it did not handle the interrupt
Carry dear cells the imem.ipt manager nol co call th. applical'.ion or ope.rating sysc rn.
Carry set tells the interrupt manager that lhe a.ppl.ication or the operating system must
be notified of the current interrupt. The caned routines must preserve the DBR, speed,
8-bit native mode, D regisc:er, tack pointer (or just use current stack), and MSLOT for
proper operation. A/XIY need not be preserved Interrupts are disabled on enuy lo
aJl incerrupt hancUers. The u er's int.errupt handler must not reenable Interrupts from
within the handler. AppleTaJk and the De k Manager are allowable exceptions . These
vectors shouJd be accessed only via the Miscellaneous Tool Set Their location in
memory is not guaranteed.

SJ:'.1 / 0020-0023

SEl/ 0024-0027

IRQ.APTALK Jump to App!eTalk interrupt handler.

Uncondir:ionaJ ju.mp to the ApplcTalk L.\P (link access
prOloco?) interrupt handler. .Handles SCC interrupts
intended for AppleTa.lk. The form of t.he call in memory is
as follows:

]MP abslong ($5C/low byLe/hlgh byte/bank byre)

IRQ. ERlAL Jump to serial-port inlerrupt handler.

Unconditional jump to serial-port intern.ipt handler.
Handles imerrup15 intended for serial ports. The form of the
call in memory is as ronows;

JMP abslong (SC/low byte/high byte/bank byte)

266 Appendix D: Vector$

IRQ.SCAN through IRQ.OJH ER vectors
Vectors IRQ.SCAN through IRQ.OTIIER are normally set up to point to lhc internal
interrup handler or lo code that sets carry and then performs an RTI. back lO the
intcrrupl manager , All the rou'~ine:s are called in 8-bil native mode and wich r.he high
speed at data bank register seL to $00 and the direct register et en SOOOO. The called
routine mus1,. ret.um carry dear if il handled the interrupt and carry SCL if it <lid nuc
handle the interrupL Carry clear tells Lhe [nterrupl manager not to call the application
nr oper<1Ling system, Carry set tells the intcrrupL manager thaL Lhe application or the
ope.rating yscem musl be notified of the rnrrenL interrupt The called routines must
preserve lhc .DBR, peed, 8-bit native mode, and D register for proper operation.
AIX/Y need nol be preserved. Imerrupts arc dis.a led on emry to all interrupt
handlers. The handler must not reenab?e interrupts from withjn t.he inrerrupt handler.
AppleTa1k and the Desk Manager are allowable exceptions. These vectors should be
accessed only via I.he Miscellaneous 'fool Set. Their location in memory is not
guaranteed_

SEI/0028--002.B

SE1/ 002C-002P

SEl/0030-0033

$E1/0034-003 7

IRQ.SCAN Jump to scan-line interrupt handler.

Unconditional jump lo the scan-line interrupt handler_
Used by the Cursor Update routine, The form of the call
in memory i.s as fol101NS:

]MP abslong ($5C/low byte/high byte/bank bye)

IRQ.SO ND Jump to sound interrupt handler.

lJnoondjtlonal jump to the sound interrupt handler.
Handles all interrupts from the Ensoniq :c;ound chip. 1lie
form of the call in memory i as follows:

]MP abslong ($5CAow byte/high byte/bank byte)

IRQ.VBL Jump lo VBL handler.

Unconditional jump to the vertical blanking (VBL) interrupt
handler. The form of the call in memory is as follow·;

JMP abslung ($5C/low byite/hlgh byte/bank byre)

IRQ.MO SE Jump to mouse i.ntcrrrupr handler.

Um:onditionaJ Jump to lhe mouse interrupt handler_ The
form of the can in memory is as follows:

JMP absl.ong ($5C/low hyte/high byte/bank byte)

IRQ.SCAN through IRQ.OTHER vec ors 267

SE.l/0038-003·B

$El/003C--003F

SEl/0040--0043

SEl / 0044-0047

$EJ/004.8-004B

IRQi.QTR Ju.mp to quaner-second inte.rrupt
handler.

Unconditional jump to the quarter-second interrupt handler.
Used by Appleialk. Tue form of the call in memory i as
follows~

JMP abslong (SC/low byte/high byre/b-ank byte)

IRQ.KBD jump to keyboard interrupt handler.

Unconditional jump to tlle keyboard interrupt handler.
Currently the keyboard .ha no hardware LnlerrupL. Keyboard
imerrupts are still available by making caU to die
Miscellaneous Tool Set, tclling it to insLaU a. hearlbcat cask
thal interrupts every time VBL polls the keyboard If a ke}' is
pressed, the heanbeat Lask will JSL through Lhls vector. This
forms a quasi-keyboard interrupt The form of the call in
memory is as, follows :

JMP abslong ($SC/low byre/high byte/bank byte)

IRQ.RESPONSE Jump lo ADB response interrupt
hand], r.

Unconditional jurnp co the ADB (Apple Desk'I'op Bus)
response interrupt handler. The form of the caU in memory is
as follows:

JMP a bslong ($ 5C/low byte/high byte/bank byte)

IR.Q.SRQ Jump to SRQ interrupt handler.

Unconditional jump to the ADB (Apple DeskTop Bus) SRQ
(service request) interrupt handler. Tue form of I.he can in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

lRQ.DSKACC Jump to Desk Manag r interrupt
handler.

Uncondltional. jump to the Desk Manager interrupt
handler. Invoked by the user pressing Comrol-6-Esc. The
form of the call in memory is as folJows:

JMP abslong ($SC/low byte/high byte/bank byte)

268 Appendix 0: Vectors

SEl/004C-004F

SEl / 0050-0053

$£1/ 0054-0057

SE 1/ 0058---00SB

SE1 /005~05P

SE I / 0060- 006 3

IRQ.FLUSH Jump to keyboard FLUSH interrupt
handler.

Uncondilional jump lo the keyboard FLUSH interrupL
handler. Invoked by the user pressing Comrol-0-Backspace.
The form of lhe call In memory is as follows:

JMP abslong ($5C/low byte/high byte/ba.nk byte)

IRQ .. M1CRO Jump lo keyboard micro abort interrupt
handler.

Uoconclilional jump to the keyboard micro abort recovery
routine. This interrupt ocrurs only when the keyboard micro
has a catastrophjc failure. lf such a failure docs occur, the
ftrmware will uy to resynchronize up to the keyboard micro
and initialize. The form of lhc call in memory is as follows:

JMP abslong ($SC/low byte/high byre/bank byte)

IRQ.tSEC Jump to 1-second interrupt handler.

Unconditional jump Lo the 1-second interrupl handler. The
form of the call in memory is as follows :

JMP abslong (SSC/low byre/high byte/bank byie)

IRQ.EXT Jump to VGC external interrupt handler.

Unconditional jump EO the VGC (vid graphlc.s chip)
external interrupt handler. Currently, the pin that generates
lhis interrupt is forced high so that :no interrupt can be
generated. This interrupt handler is for future sysccrn
expansion and currently cannot be used The form of rhe
call in memory i as follows:

JMP abslong (SC/low byte/high byte/bank byte)

IRQ.OTHER Jump to other Interrupt handler.

UncondirJonal jump to an installed interrupt handler that
handles imerru pl.S other than I.he ones ha.ndled by the
jnlernal firmwar-e. This is a general-purpose vector. The
form of the c.aU in memory is as folrov.rs :

JMP abslong ($SC/low byte/high byte/bank brte)

CUP'DATE Cursor Update vector,

Unconditional jump lO Lhe Cursor Update routine in
Quick.Draw ll. The form of the call in memory is as follows:

JMP abslong CS5C/low byte/ high byte/bank byte)
IRQ.SCAN through IRQ.OTHER vec ors 269

$E1/0064--0067

$E1/0068-006B

SE 1/006C--006F

SEl/0070- 0073

I CB YFLG Increment busy flag vector.

Unconditiona1 jump to the increment busy flag mutin . The
form of the call in memory Is as follows:

]Ml? abslong ($5C/low byre/high byte/bank byte)

DE CBUSYFLG Decrement busy Hag vector.

Unconditional jump to the decrement busy Oag routine. The
form of the call in memory is as follows:

JMP abslong ($SC/low byre/high byte/bank byte)

HEU. CTOR Monitor bell vector !nite.rcept rouLine.

Unconditional jump to a user-in tailed BEU routine. 1be
MoniLor calls this rauline whenever a BELL d1arac~ ·r ($87)
is output through the outpuc hooks (CSWL/CSWH $36/$37)
and whenever BELLI, BELLl .2, and BELL2 are caJled. The
routine is called in 8-bit nat.ive mode and must r turn LO the
Monitor in 8-bit na tive mode. The data bank register and
direcL register must be preseJ"Ved. Carry musL be rel\lrned
clear, or the Monitor will gener te itS own bell sound. For
compacibiliry wiLh existing programs, the X reg,iscer must be
preserved during this calJ, and Y musl be ""$00 on exit from
this call. The form of lhe call in memory is as follows:

JMP abs1ong ($5C/low byte/high hyle/bank byte)

BREAKVECTOR. Break vector.

Unconditional jump to a user-installed break vector. The
user' routine i.s called in 8-bit nalive mode al high .spc d,
with the data bank register set to SOO and I.he direct. register
set w $0000. The user' routine must preserve I.he cLua bank
register, direct register, and speed and return in 8-bil native
mode wich an RTI. The user's routine mus1 also dear carry, o r
lhe norma1 break roul:inc pointed lo by the vector at
$00/ 03F0.03Fl will be called. rf carry comes back clear, the
break inteirru pl is processed and the a(.)Qlkallon program is
resumed 2 bytes pasr the BRK opcode. ·nus vector is set up for
use y debuggers such as the Apple TIGS debugger. The forrn
of lhc call in memory is as follows;

JMP abslong ($5C/low byte/ high byte/bank by~e)

270 Append ix D: Vectors

SEl/0074-00n

•E J/0078-007B

SE 1 /007C-007F

TRACE • C'fOR Trace vector.

Unconditional jump to a 1.n1cc vector. The use.r's routine is
called in 8·bjL native mode at high speed, with I.he data bank
register set to SOO and the direc.t register set to $0000. The
user's routine must preserve the data bank register, direct
register, and speed and return in 8-bit native mode with an
RU. If I.he user's routine clears carry, lhe Monllor Lirmw:ire
r&;um.es where it lcrt olT. I f lhc user sets carry, I.he Moni tor
firmwam currently will print Trace on lhc screen and continue
where it lefL off Thi.'5 vector is set up for use by future sy5lem
firmware and by current debugger . The farm of the call in
memory is as follows:

}MP abs long ($SC/low byte/high byte/bank byte)

TEPVECTOR Step vec LOr.

Uncondjtlonal jump to a step vector. The user's routine is
called in 8-bil native mode at hlgh speed, with the dara bank
register se t to $00 and the direct reg ister set lo $0000. The
user's routine must preserve the data bank register, direct
register, and speed and return in 8-bil nalive mode wilh an
RTI.. If I.he user dears carry, the }.Ionlror firmware resumes
where it left off. If the user's routine sets carry, the Monitor
firmware curre.nlly wm print Step on lhe screen and continue
where it left off. This vector is set up for use by future ystcm
firmware and by cu rrenr debuggers. 1ne fo.rm of the call in
memory ls as rollows:

JMP abslong ($5C/low byte/high byte/bank byte)

Reserved for future expansion.

This vector is reserved for future system expansion and is not
available to the user. The form of the call in memory is as
follows:

JMP abslong (.$5C/low byte/high byte/bank byte)

IPQ.SCAN hrough IRQ.OTHER vec ors 27 1

JO·WR'ITEBR through MSGPOI NTER vectors
Vector TOWRITEBR through MSGPOINTER are gua.ran1.eed lo stay in I.he same
memory locations in aU Apple IlGS-comp:Jitib1e systems. These vccwns a.re for
conv nience and are nol ro be altered by any appli alion.

SEl/0080-0083

$E1/0084-0087

SEI / 0088-0088

TOWRITEBR Write BATIERYRAM routine.

Thi vcc:.tor pofnis co a routine l'.hal copies I.be
BA'ITE.RYRAM bulfe.r in bank SEl lo the cloclc chip
BATIERYRAM wilh proper ch~cksums. This routine is
called by the Miscellaneous Tool land by the Control
Panel The form of the caH in memory is as follow ;

]MP ab long (SSC/low byte/high byce/ba.nk bylc)

TOREADBlt Read BATIERYRAM routine.

Th.L5 veclo.r points to a routine that co pres th "' dock chip
BA'.ITERYRAM m U'le BATIBRYRAM buffer in bank SE1,
compares the checksums, and if the checksums match,
retum'> to th· caller. Jf che check.sums do nm match or ff one
of the values in the llATTERYRAM is om of limits, Lhe system
defaul t parameters are wrilt.en into Lhe llATTERYR.Ai\ot buffer
in bank $El and then in o Lh dock chip BATfERYRAM
with proper checksums. Th.i routine is called by the
Miscellaneous Tool Set and by the Conlrnl Panel. 'The form
of the call in memory is as follows:

JM P abslong ($SC/low byte/high byte/bank hy1 ~)

TOWRITETIME Write lime routine.

This vector poincs lO a rouline that rites to the seconds
regisler in the dock chip. It t.ransfers the values in Lhe
CLKWDAiA buffer in bank$ 'I lo the clock chip. This routine
is caUed by I.he ~Hsce!Janeous Tool Set. only. 11 returns carry
clear if the write operation was successful and carry set if i
was un.successful . The form of I.he call in memory ts as
follows:

J 1P abslong ($5C/low byte/high byte/bank byte)

272 Appendix D: vectors

SE1 /008C--008F

SEl/0090-0093

SE 1/0094--0097

SEJ/0098-009B

TO READ TIME Read time routine.

ThJs vector points to a routine that reads from tlle seconds
registers in the clock chip. It transfers me values l..o the
CLKRDATA buffer in bank SEl to the dock dtlp. This routine
is called by l:hc Miscellaneou • Tool Set only. It returns carry
clear if lhe read operation was s.ucressful and cany sel if it was
unsuccessful. The form of l.he caU in memory is as follows:

P.fP ab.slang ($SC/low bylelhigh byte/bank byte)

TOCTRL.PANEL Show Con.tral Panel.

·Ibis vector points lO the Control Panel program. I assumes
~L was called from the Desk Manager. It uses most of :zero
page. ll RTI..s back to the Desk Manager when Quit is chosen ,
The form of the call in memory is as follows:

JMP absJong ($SC/Jow bytc/hlgh byte/bank b}'tc)

l'O:B;RA.MSETUP ScL up .system to BATfERYRAM
parameters routine.

This vector points to a routine lhar sets up the system
paramclcrs to match the values in lhe BAn'ERYRAl\.1 buffer.
In addition, if il is called with carry clear, il sets up the slot
configuration (internal versus exlemal). Tf il i.s called with
carry set, it does nol set up the sfol configuracion (internal
versus exlernal). BAlTERYRAM buffer $El values can be set
via lhe MisccUancous Tool Se1 only. 'Ille r orrn of Lhe call in
rnemmy is as follov.'S:

JMP ab.'jlong (SSC/low byte/high byte/bank byte)

TOFRINTMSGS Print ASCII string desfgna1ed by lhe
8-biL accu rnulalor.

This veoor points to a routine that displays CII strings
pointed lo by multiplying lhe 8-bil ;1ccumulalor times 2
(shifting Il left l bil) and then indexing into lhc address
pointer table pointed to by MSGPOTNTER (address
$El/OOCO; 3-byte pointer). ll !.hen uses thal address to get
the st.ring to display. This routine is used by the built-in
Control Panel, by any texL-b:a ed RAM Conlrol Panel,
and by the Monitor (lo display rncssa.gcs). The form of the
c.all in memory is a5 follows:

JMP abslong (SSC/low by1.e/high byte/bank byte)

TOWRITEBR through MSGPOINTER vectors 273

$ E 1/009C-009F

SEl / OOAO-OOA3

SE l/OOA4-00A 7

5El /OOA8--00BF

TOPJllNTMSG16 Print ASCll string designated by the
16-bit accumulamr.

This vector poinrs to a routine that displays ASCII strings
pointed to by lhe 16-bit A regiscer. The accumulator is used
w index into the address pointer table pointed to by
MSGPOINTER (address $El/OOCO; 3-byte pointer). It then
uses that address co get the string to display. This routine is
used by the built-jn Control Panel, by any text-based R.Ai\1'.
Control Panel, and by Lhe Monitor (to display messages).
The form of the call in memory is as follows;

JMP abslong ($SC/low byte/high byte/bank byte)

CfRLYVECTOR User Control-¥ vector.

Unconditional jump to a user-defined Control-Y vector. The
user's routine is called in 8-bit native mode, wilh the data
bank register set to $00 and lhe direct register set to S-0000.
The user's routine mus:t preserve the cbca bank register, di:recr
register, and speed and return in emulation mode with an RTS
from bank $00. If no debugger ve<:cor is installed, the Monitor
firmware will go tO the user's routine via the normal
Contro l· Y vector in bank $00 (USRA11R 00/03f8.03F9.03FA).
nus vector is set up lo be used by debuggers. The form of the
call in memory is as follows:

]MP ab.slang (SSC/low byte/high byte/bank byte)

TOTEXTPG2DA Point to Alternate Display Mode desk
accessory.

This vector points lO me Alternate Display Mode program. l[
aSfillmes ft was called from the Desk Manager. le RTLs back to
I.he Desk Manager when a key Is pressed The form or 1.he call
In ffiffii.6fij is as rallows:
]MP abslong ($ 5C/low byte/ high byte/bank byte)

PR016MU ProDOS 16 MlI vectors.

This vector poinrs to the ProDOS 16 routines. Consult
ProDOS 16 documents for information about these calls.

27~ Appendix D: Vectors

$ E 1/00CO- OOC2 MSGPOINTER. Pojnter to all strings used in ConU'ol
Panel, Altemate Display Mode, and
Monitor sysLem messages.

This 3-bytc vector poinlS to the address pojnrer lable lha1
points lO ASCIT strin~ u.5ed by lhe Control Panel, Alternalc
Di.splay Mode, and 1onHor system messages.]£ is not
useful for users. The form of the call in memory is as
follows~

low byt.e/ high byte/bank byte

TOWRITIEBR through MSGPOINTER vectors 275

Soft Switches

This appendix contains a list or the Apple UGS sofl witches--the locations at which
va.riou program-definable system control oplion.s may be ace ssed and changed.
;o.lote that this listing of soft swilches is provided for reference only. You should change
the contents of a soft switch only by using 1.he appropriate mol from the toolbox_ Refer
lO I.he Apple llGS Toolbox Reference for more inf. rmation.

lmpor1ant
If you cnoos.e to change the contents of any of the sof swl ches (not
recommended ottier tnon by uslng the toolbox routines) for any bit tno is llsted
herein os undefined, you should mask thot bit. In other words , read the current
contents of the data byte. modify only the bits that are defined. and write the·
contents bock to the switch loco Ion.

Tables E-1 and E-2 are symbol tables sorted by symbol and addres .

COQO: cooo 20 IOADR EQU * ;All I/O is at $Cxxx
COOO: cooo 21 KBD EQU * ; Bit 7 = l if keystroke

;Bits 6-0 = Key pressed
cOOO:OO 22 CLRBOCOL DFB 0 ;Disable 80 -column store
COOl:OO 23 SET80COL DFB 0 ;Enable 80-column store
C002:00 24 RD MA IN RAH DF8 0 ;Read from main 48K RAM
C003:00 25 RDCARDRAM DFB a ;Read from alternate <;SK
C004:00 26 WRMAINRAM DFB 0 ;Write to main 48K RAM

RAM

C005:00 27 WRCARDRAM DFB 0 ;Write to alternate 48K RAM
C006:00 28 SETSLOTCXROM DFB 0 ;Use ROM on card::;i
r nn1. no :'.lQ CQ'l':CWTOJC.f.\O .. J)!"D 0 , Uo:>c l. •• i...~,1.1ial. ru::if'!

COOB:OO 30 SETSTDZP DFB 0 ;Use main zero page/stack
C009:00 31 SETALTZI? DFB 0 ;Use alternate zero page/stack

276

COOA:OO
COOB:OO
cooc~oo

COOD:OO
CDDE:OO
COOF: 00
COlO:OO
con: oo
C012;00
C0l3;00
C014: 00
C015: 00
C016:00
co 7: 00
C018:00
C019:00
COlA: 00
COlB: 00
COlC:OO
COID ;00
COlE;OO

COlF:OO
C020:00

C021:
C021:
C021:
C021:
C021:
C021:
C021:

C021;
C021:
C021:
co21~00

C022:
C022:
C022:
C022:
C022:
C022:

C022:

32 SETINTC3ROM
33 SETSLOTC3ROM
34 CLR80VID
35 SET80VID
36 CLRALTCHAR
37 SETALTCHAR
38 KBDSTRB
39 RDLCBNK2
40 RDLCRAM
41 RDRAMRD
42 RDRAMWRT
43 RDCXROM
44 RDALTZP
45 RDC3ROM
46 RD80COL
47 RDVBLBAR
48 RD'l'EXT
49 RDMIX
50 RDPAGE2
51 RDM!RES
52 ALTCHARSET

53 RD80VID
54

DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0
DFB 0

DFB 0
DFB 0

;Enable internal slot 3 ROM
;Enable external slot 3 ROM
;Disable 80-column hardware
;Enable BO-column hardware
;Norma l LC, flashing UC
;Normal inverse, LC; no flash
;TuLn off keypressed flag
;Bit 7 • l if LC bank 2 is enabled
;Bit 7 1 if LC RAM read enabled
;Bit 7 ~ 1 if reading alternate 48K
;Bit 7 • l if writing alternate 48K
;Bi t 7 1 if using internal ROM
;Bit 7 - l if slot zp enabled
;Bit 7 • 1 if slot c3 space enabled
;Bit 7 1 if 80-column store
;Bit 7 - l if not VBL
;Bit 7 • 1 if text (not graphics)
;Bit 7 1 if mixed mode on
;Bit 7 1 if TXTFAGE2 .switched in
;Bit 7 - 1 if HIRES is on
;Bit 7 a 1 if alternate character
set in use
;Bit 7 • l if 80-colum.n hardware on
;Re.served for future system
expan::sion

56 * 1 ____ 6 ___ s _ __ <i ___ 3 ____ 2 _ __ 1 ___ 0 __

57 *I
58 !Enable
59 *lcolor/ O 0 0 0 0 0 0
60 * lmono

61 • , _ ___ ---- ---- - --- ---- ---- ---- ----
62 * A~~~~ MONOCOLOR status byte AAAAA

64 *
65 *
66 ...,
61:!

HONOCOLOR bits defined as follows:
Bit 7 = 0 enables color, l disables color
Bits 6, 5, 4, 3, 2, 1, 0 must be 0
MONOCOLOR DFB 0 ;Monochrome/color selection register

70 * 7 ____ 6 ___ 5 ________ 3 ___ 2 ___ 1 ___ 0 __

71 * r
12 *I
73 "'I
74 *I

Text coloz: bits Background colo~ bits

15 *I _ _______ ____ ________________ ___ _

76 * TBCOLOR byte

Appendlx E: Soft Switches 277

C022:
C022:
C022 :
C022:
C022 :
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:
C022:00

C023:
C023:
C023:
C023;
C023:
C023:
C023:

C023:
C023:
C023:
C023:
C023:

C023:
C023:
C023:
C023:

C023:00

78 *
79 *
80 *
81 *
82 ..
03 .,,.

84 *
85 *
06 *
87 *
88 *
99 *
90 "'
91 *
92 *
93 *
94 *
95 *
96 "'
97 *
99 "'

100

TBCOLOR bits defined as follows:
Bits 7 , 6, 5, 4 Text color bitB
Bits 3, 2, 1, 0 - Background color bits

Color bi s
so Black
$ 1 - Deep red
$2 Dark blue
$3 Purple
$4 • Dark green
$5 Dark gray
$6 Medium blue
$7 Light blue
$8 Brown
$9 Orange
$A Light gray
$B • Pink
$C Gr een
$D Yellow
$E Aquamarine
$F White
TBCOLOR DFB 0 ;Text/background color ~ lection

register

102 * ' 6 ~ 4. 3 ~~~~ ~~~ ~~~- -~~-

103 *I I
1 04 *IVGC l lsec !Scan IExt l lsec IScan l~xt
105 * I int I int I int I int 0 I int I int I int
106 *I active I active I active I I enabl,e I enable I enable I
107 * J ___ I I I ______ I I t I
108 * VGCINT status byte

110 VGCINT bits defined as follows;
111 * Bit 1 1 if interrupt generated by VGC
112 Tl< Bit 6 l if 1- second timer interrupt
113 * Bit 5 1 if scan- line interrupt
114 .. Bit 4 1 if external inter.rupi: (forced low in

Apple !IGS)
115 * Bit 3 must be 0
116 • Bit 2 1-second timer interrupt enable
117 * :Bit l scan- l i ne i nterrupt enable
118 * Bit 0 ex int enable (can ' t cause n int in

Apple IIGS~
120 VGCINT DFB 0 :VGC interrupt i:.-e9ister

278 Appendix E; Soft Swltchas

C024:
C024:
C024:
C024:
C024:
C024:
C024:

C024:
C024:
C024:
C024:
C024:
C024: 00

C025:
C025:
C025:
C025:
C025:
C025:
C025:

C025:
C025:
C025:
C025:
C025:
C025:
C025:
C025:
C025:
C025:00

C026:
C026:
C026:
C026:
C026:
C026:
C026:

122 * ? 6 5 4 3 2 - -
123 "'I
12 4. *I Button
125 * I.status I Delta Delta movement
126 *tnow l siqn
127 *I
128 *

130 *
131 *
132 *
133 •
134 *
136

I
,..A,..AA MOUSE.DATA byt e l'\hAl\.A

MOUSEDATA bits defined as follows:
Bit 7 button 1 status if reading X data

button 0 status if reading Y ciata
Bit 6 "' sign of delta 0 = 1 +1

- 1 = 1
-

1

Bits 5, 4, 3, 2, l, 0 ~ Del ta movement
MOUSEDATA DFB 0 ;X or Y mouse data register

0 - -

138 * , ____ 6 s .i 3 2 o __
13 9 * I I Update I I I
140 *!Open JClo~ed l mod IKeypadlRepeat l Caps ICtrl !Shi ft I
141 *!Apple !Apple l no key l key lact ive rlock Ikey jkey I
142 * Ikey Ikey lpress l activel lactivelactive l activel
143 * I I I I I I I I I
144 *

146 ..
147 *
148 *
149 *
150 *
151 *
152 *
153 *
154 *
156

1 58 *

KEYMODREG status byte

KEYMODREG bits defined as fo l lows:
Bit 7 • 0 key active
Bit 6 • • key active
Bit 5 Updated modifier latch without keypress
Bit 4 • Keypad key act i ve
Bit 3 Repeat active
Bit 2 • Caps lock active
Bi t 1 • Control key active
Bi t 0 Shift key active
KEYMODREG DFB 0 ;Key modifier reg i ster

? 6 - - ___ s _ __ 4 ___ 3 _ ___ 2 ___ 1 ___ 0 _ _

159 * r
160 *I
161 * I Data to/from keyboard micro
162 *I
163 *I
164 * AAA.Al\ OATAREG byte

Appendix E; Soft Switches 279

C026;
C026:

C026:
C026 :

C026:
C026:
C026:
C02·6:
C026:
C026:

C026:
C026:
C026: O•O

C027:
C027:
C02 7 :
C027:
C027:
C027~

C027:

C027:
C027:
C027:
C027:
C027:
C027 :
C0.27:

C027 :
C027:
C027;
C027 : 00
C028:00

16 6 *
167 *

1 68 *
169 *'

170 *
171 *
172 *
173 *
174
175 *

176
177 *
17 9

DATAREG bits defined as follows:
Bits 7, 6, 5, 4, 3, 2 , l , 0 =Data to/from keyboard

micro

Data at interrupt time in this register def i ned aa
follows:
Bit 7 Response byte if 5et; otherwi:;se , ::st.atu::s byte
Bit 6 • ABORT valid i f set, and all other bits i=e.set
Bi t 5 Desktop Manager key sequence pressed
Bit 4 Fl ush buffer key sequence pressed
Bit 3 • SRQ valid i f set
Bi t s 2 1 1, O; if all bits clear, then no FDB data
valid; o herwi se the bit5 indicate the number o f valid
bytes r@c@ived minus 1 (2 - B byt es t o t al >

DATAREG DFB 0 ;Data register in GLU chip

181 * ____ 7 ________ 6 ______ 5~~~-~~~~]~~~-2~~~1~~~0

182 * I
183 * !Mouse !Mouse !Da ta !Data !Key IKey IMouse ICmd
184 * l reg lint lreg l int ldata l int IX/Yreg l reg
185 * l full lenable[full fenable l full l enableldata l full
186 *1 ___ 1 l ___ I l _ __ I I I __ _
187 * ~~~~~ :KMSTATUS byte ~~~~~

189 *
190 *
191
1 92 *
1 93
194 *
1 95 *

196 *
1 97 *
1 98
200
201

bits defined as follows:
1 if mouse register full

KMST ATUS

Bit 7
Bit 6 • mouse interrupt disable/enable

l if data register ful l Bit 5
Bit 4 data interrupt en ble
Bit 3 • 1 if key data full (never use, won't work)
Bit 2

Bit 1

key data interrupt enable (never use, won't
work)
0 mouse ' X' regis t er data available
1 = mouse 'Y' register data available

Bit 0 Command reg i ster full
KMSTATUS DFB 0 ;Keyboard/mouse status register
ROMBANK DFB 0 ; ROM ba.nk select togrg le (not used in

Appl e IIGs)

280 Appendix E: Soft Swl ches

C029:
C029:
C029:
C029:
C029:
C029:
C029:

C029:
C029:

C029:
C029:
C029:
C029:

C029:
C029:00

C02A: 00

C02B:
C02B:
C02B:
C02B:
C02B;
C02B:
r n?µ,:

C02B:
C02B:
C02B:
C02B:

C02B:
C02B~

C02B:
C02B:
C02B:
C02B:
C028:
C02B:
C02B:

C02B:
C02B:OO
C02C:OO

203 Jt 6 5 ::. 2 D
__ 7

--204 * I I I I
205 * I Enable ILinearlB/W I I I I Enable I
206 * I .::iuper I v i deo I Color I 0 I 0 I 0 I 0 lbank 11
207 * lhi-res I IDHi re.s l I I I I batch
208 * I
209 "'

211 *
212 "'

213
2H *
215 ...
2 1 6 *

21 7 *
219

220

I I I I I I I
NEWVIDEO byte

NEWVIDEO bits defined s fol l ows:
Bit 7 1 = Disable Apple Ile video (enables super

hi-res)
Bi t 6
Bit 5

1 to linearize for super hi-res
0 tor color double hi-re~; 1 for B/W hi- res

Bi ts 4, 3, 2, 1 mus t be 0
Bit 0 • Enable bank 1 latch to allow long instructions

to acces.13 bank 1 directly; set by Monitor
only; a programmer mu.st not change this bit.

NEWVIDEO DFB 0 ;Video/enable read alternate mem
with long instructions

DFB 0 ;Reserved far future system
expansion

222 * __ 7 _ ___ 6 ___ 5 ___ il. ___ 3 ____ 2 _ __ 1 _ __ 0

223 * I
224 * I Character Generator
225 Jt I language selec
226 * I

NTSC/ I Lang
PAL lselectl

I bit I
0 0 0

227 * I ____ --~- ____ -~--- 1 t ___ --~ ----~
22a * AAA A~ L~1cC£L bytQ

230 *
231 *
232 *
233 *
234 •
235 *
236 ...
237 *
238 *
239 *
240 *
241 *
242 *

LANGSEL bits def i ned as follows:
Bit s 7, 6, 5 = Character-gene~ator language selector
Primary langl.lage Secondary l anguage
$0 English (USA) Dvorak
$1 Eng l ish (UK} USA
$2 • Frenc h USA
$3 Danish USA
$4 Spanish USA
$ 5 I tal i an USA
$ 6 German USA
$7 Swedish USA
Bi t 4 0 if NTSC video mode, 1 if PAL video mode
Bit 3 = LANGUAGg switch bi t 0 if primary lang set

sel ected
0 must be O

I
I

243 *
245
246

Bits 2, 1,
LANGSE.L
CHARROM

DFB 0 ; Languag·e/PAL/NTSC select register
DFB 0 ;Add.r for st mode read of character

ROM

Appandl)(E: Soft Switches 281

C02D:
C02D:
C02D:
C02D:
C02D:
C02D:
C02D:

C02D :
C020:
C02D:
C02D:
C02D;
C02D:
C02D:
C02D:
C02D:
C02D:00
C02E:OO

C02F:OO

C030:00

C031:
C03l:
C03 1 ;
C03l:
C031:
C03l:
C03 1 :

C03l:
C031:
C031:
C031:
C03 1 :00

C032:
C032:
C032:
C032:
C032:
C032:
C032:

248 * 7 6 s 4 J 2 i a ---- ---- ---- ---- ---- ---- ----
249 *I
250 * j Slot7 I Slot6 r Slot5 I Slot4 I Slot2 I Sl otl
251 * l intext Jintextl i ntext l intextl 0 f intext l intext ~ a
252 * !enable l enablelenable l enablel lenablelenabl e l
253 * l ___ I I I l ___ I I I __ _
254 * SLTROMSEL byte AAAA A

256 *
257 *
258 *
259 *
260 "'
261 *
262 *
263 "'
264 *
266
267

26S

269

SLTROMSEL bit~ def i ned as fol l owa :
Bi t 7 ti 0 enables internal slot i, 1 enables s l ot ROM
Bic 6 0 enabl es internal slot 6 , 1 enables slot ROM
Bit 5 0 enables internal ~lot 5, l enable~ ~lot ROM
Bit 4 0 enab l es internal slat 4, 1 enabl es slot ROM
Bi t 3 must be 0
Bit 2 = 0 enables internal ~lot 2, l enablea 8lot ROM
Bit 1 = 0 enables internal s l ot 1 , 1 enabl es slot ROM
Bi t 0 must be 0
SLTROMSEL DFB 0
VERTCNT DFB 0

HORIZCNT DFB 0

SPKR DFB 0

;Slot ROM select
;Addr for read of video cntr bits
VS-VB
;Addr for read of video cntr bits
VA- HO
;Cl icks the speaker

27 l * 7 ____ 6 ___ 5 ______ 3 ___ 2 ___ 1 ___ 0 __
272 * I
273 *13 . 5" 13.5"
274 * l head l drive
275 * !Select l enable l

0 0 0 0 0 0

27 6 * 1 _ __ ~ 1 I _ ________________ _
277 * DISKREG stat.us byte

279 .,,

280 *
281 *
282 It

284

286 *

DI SKREG
Bit 7 -
Bi t 6 =

Bi ts 5,
DISKREG

7

bi cs def ined as follows:
1 to select head on 3 .5"
1 to enable 3.5" dr i ve
4, 3, 2, 1, 0 must be 0

DFB 0 ;Used for 3.5"

6 5 'l J. -- ---
287 * I
288 * I I Clear I Clear
209 "I 0 11 sec I scan 0 0
290 *I rint lln inti
2 91 *I I I I
292 * SCANINT byte

drive to use

disk dr i ves

2 1 0 --

0 0 0

282 Appendix E: Soft Switches

C032:
C032:
C032:
C032:
C032:
C032:
C032:
C032!
C032!
C032:00

C033:
C033:
C033:
C033:
C033:
C033:
C033:

C033:
C033:

C033:00

C034:
C034:
C034:
C034!
C034:
C034:
C034:

C034:
C034:
C034:
C034:

C034:

C034:
C034:

C034:00

294 .,

295 *
296 *
297 *
29B *
299 *
300 *
301 *
302 *
304

306 *

SCANINT bits defined a.!l follows:
Bit I must be 0
Bit 6
B.it 5
Bit 4

Bit 3
Bit 2
Bit 1
Bit 0

~ Write 0 here to reset 1-second interrupt
= Write 0 here to clear scan-line interrupt
must be 0
must be O
must be 0
mu~t be 0
must be a

SCANINT DFB 0 ;Scan- line interrupt register

I 6 -- _ __ s ___ 4 ___ 3 ____ 2 _ _____ o __
301 *J
308 * I
309 * I Clock data register
310 "" I
311 * I
312 * A/"!.Ah .A CLOCKDATA byte

314 * CLOCKDATA bit:s defined as follow::i:
315 • Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data passed to/from c l ock

chip
317 CLOCKDATA DFB 0 ;Clock data register

319 * __ ; ___ _
320 *I
321 *!Clock
322 * I xfer
323 *I

324. *I ____ ·---- ____ --------------------
325 * nAnAn CLOCKCTL byte

321 *
328 *
329 *
330 *

331 -It

332 *
333 *

335

CLOCKCTL bits defined as follows:
Bit 7 = Set - 1 to start transfer to clock
Read = 0 when transfer to clock is complete
Bit 6 • 0 a Wri te to clock chip, 1 = Read from clock

chip
Bit 5 Clk chip enable asserted after transfer

0 ,,. no/l = yes
Bit 4 must be 0
Bits 3, 2, 1, 0 = Select border color (see TBCOLOR for

values)
CLOCKCTL DFB 0 ;Clock control register

Appendix E: Soft Switches 283

C035:
C035:
C035:
C035:
C035:
C035:
C035:

C035:
C035:
C035:
C035:
C035:
C035:
C035:
C035:
C035:
C035:00

C03,6:
C036:
C036:
C036;
C036:
C036:
C036:

C036:
C036:
C036:
C036:
C036:
C036:

C036:

C036:

C036:

C036:00
C037:00
C038:00
C039:00
C03A: 00
C03B:00

337 * 7 6 5 3 2 l 0 -- ~-

338 '" I
339 * I
3~0 * I
341 * I
342 *I
343

345 *
346 *
347 *
348 "'
349 *
350 *
351 *
352 *
353 *
355

I
I Stop I I Stop I Stop I Stop I Stop I Stop

0 I I /O/LC I 0 l au.xh-rlsuprhrlhires21hire::illtxpg
I shadow I l shadowlshadowjahadowlshadowjshadow l
I I I I I I I

SHADOW byte A,,._AAA

SHADOW bits defined as follows:
Bit 7 must write 0
Bit 6 e 1 to inhibit I/O and .language-card operation
Bit 5 must w~ite 0
Bit 4 = l to inhibit shadowing aux. hi-re.s page
Bit 3 .,. 1 to inhibit shadowing 32K vid~o buffer
Bit 2 • 1 to inhibit shadowing hi-res page 2
Bit 1 1 to inhibit shadowi ng hi-rea page 1
Bit 0 l to i nhibit shadowing t ext pages
SRADOW DFB 0 ;Shadow register

I

357 * 1 ____ 6 ___ 5 ____ ~ ___ 3 ___ 2 ___ 1 ___ 0 __

358 *I
359 *!Slow/ 1Shadow l5lot 7 1Slot 61Slot 5 1Slot 4 1
360 *!fast 0 0 lin a l lmotor Imoto !motor lmotor I
361 ~1speed IRAM ldetectJdetectldetect ldetectl
362 * I______ I I I I I I
363 "'

365 *
366 *
367
368 *
369 *
370 *

371 *

372 *

373 *

375
376
37?
378
379
380

CYAREG byte ~AAAA

CYAREG bits defined as f ollows:
Bit 7 = 0 = Slow system speed, 1
Bit 6 must write 0

.E'ast. .system speed

Bit 5 must write 0
Bit 4 • Shadow in al.1 RAM banks (never use)
Bit 3 Slot 7 disk motor on detect ($et by Monitor

only)
Bit 2 • Slot 6 disk motor on detect (set by Monitor

Bi t l

Bi t 0

CYAREG
DMAR.EG
SCCBREG
SCCAREG
SCCBDATA

only)
Slot 5 disk motor on detect {set by Monitor:
only)
Slot 4 disk moto:r on detect (set by Monitor
on.ly)

DFB 0

DFB 0
DFB 0
DFB 0
DFB 0

;Speed and motor on detect
; Used during OMA as bank address
;SCC channe.1 B cmd register
;SCC channel A cmd register

SCCADATA DFB 0
;SCC channel B data register
;SCC channel A data register

284 Appendix E: Soft Switches

C03C:
C03C:
C03C:
C03C:
C03C:
C03C:
C03C:

C03C:
C03C:
COJC:
C03C:

C03C:
C03C ;
C03C:

C03C: 00

C03D:
C03D:
C03D:
C03D:
C03D ~
C030:
C03D;

C03D:
C03D:

C03D;OO

C03E:
C03E:
C03E:
C03E:
C03E:
C03E:
C03E:

C03E:
C03E:

C03E:OO

382 * "I 6 5 4 3 2 0 -- --
383 *I
384 *I Busy I Auto JAccessl
385 *I flag I doc/ l ine I 0 Volume DAC
386 *I
387 *J
388 *

390 *
391 fl

392 *
393

394 *
395 *
396 *

398

IRAM ladrptr I
I I I

Al'\.AAA SOUNDCTL byte

SOUNDCTL bits defined as fo l lows:
Bit 7 0 if not busy, 1 if busy
Bit 6 • 0 Acces:;i doc, l = Access RAM
Bi t 5 • 0 ... Di sabl e auto incrementing of address

pointer
1 Enable auto increment i ng of address po i nter

Bi t 4 must be 0
Bit:;i 3, 2, 1 , O = Volume DAC-$0/$F "'"" Low/full volume

(write on l y)
SOUNDCTL DFB 0 ;Sound control register

400 '* '1 ____ 6 _ _ _ 5 ___ 4 ___ 3 ____ 2 ___ 1 ___ 0 __

401 *I
402 *I
403 *I
404 * I
405 * I
406 *

408 *
409 *

411

413 *

Sound data read/written

SOUNDDATA byte

SOUNDDATA bits defined as fol l ows:
Bits 7, 6, 5; 4, 3, 2, l , 0 & Data read from/writ t en to

s ound RAM

SOUNDDATA DFB 0 ; Sound data regi ster

1 ti 5 3 2 l 0 - -
414 * I
415 *I
416 *I Low byte of sound address pointer
417 *I
418 *I
U9 * "" ,., SOUNDADRL byte hA.AAA.

421 * SOUNDIIDRL b i ts defined as fo l lows:
422 * Bits 7, 6, s, 4, 3, 2, 1, 0 • Address into sound RAM

low byte
424 SOUNDADRL DFB 0 ;Sound address pointer, low byte

Appendix E: Soft Switches 285

C03F:
C03F:
C03F:
C03F~

C03F:
C03F:
C03F:

C03F:
COJF:

C03F:OO
C0'10:00

426 * ., 6 5 4 3 2 1 0 -- --
427 *I
42B *I
429 *I
430 I
431 * I
432 *
434 *
435 *

437
438

High byte of sound address pointer

SOUNDADRH byte ,.,,.,,..;..;..

SOUNDADRH bits defined as follows:
Bits 7 .r 6 , 5, 4 ,

SOUNDADRH DFB 0
DE'B 0

3, 2, 1, 0 = Address into sound RAM
high byte

;Sound address pointer, high byte
;Reserved for futu~e syst~m
expansion

~ Note; The Mega II mouse is not used under Apple IIGs as a mouse, but the
soft switches and functions are used. Therefore, the programmer may not
use the Mega II mouse soft switches.

C041: HO * 7 6 5 4 :l 2 1 0 -- --
C04l:
C041:
C041:
C041:
con.:
con:

C041:
C041:
C041:
C04.1:
con:
COU!
C041:
C041:
C041:
COU:OO

441 "' I
442 *I
443 '* I
444 *I
445 *I
446 *

448 *
449 *
450 "'
451 *
452 *
453 *
454
455 *
456 *
458

C042:00 459

C043:00 460

I
IEnablelEnablelEnablelEnablelEnable J

0 0 0 11/4secJVBL I switch I move I mouse
l int5 lints lint3 l ints I
I I I I J

INTEN byte ~~AA~

INTEN bits defined
Bit 7 must be 0
Bit 6 must be 0
Bit 5 must be 0
Bit 4 1 to enable
Bit 3 1 to enable
Bit 2 • 1 to enable
Bit 1 M 1 to enable
Bit 0 1 to enable

as followe:

quarter-second interrupts
VBL interrupts
Mega I I mouse switch interrupts
Mega II mouse movement interrupts
Mega II mouse operation

I
I
I

INTEN DFB 0 ;Interrupt-enable regi5ter (firmware
use only)

DFB 0 ;Reserved for future system
expansion

DFB 0 ;Re.served for future system
expansion

286 Appendix E: Soft Switches

COH.:
COH;
C044:
COH:
C044:
C044:
C044:

C044;
C044:

C044:00

C045:
C045:
C045;
C045:
C045:
C045:
C045:

C045:
C045:

C045:00

C046:
C046:
C046:
C046:
C046:
C046:

S:9~8;

C046:
C046:

C046:

C046:

462 * 7 6 5 3 ~ 0 - - --
463 * I
464 * I
465 I
4.66 *I
467 *I
468 *

470 *
471

473

475

476 *I
477 I
478 *I
479 I
480 *I
481

483*
484 *

486

488 *

Mega II Mouse delta movement byte

MMDELTAX byte

MMDELTAX bits defined as follows:
Bits '7 I 6, 5, 4, 3, 2, 1, 0 = Delta movement in 2 ' s

complement notation
MMDELTAX DE'B 0 ;Mega II mouse deli:; a x regi5ter

7 6 5 3 2 1 0

Mega II Mouse delta movement byte

A f't, I\"" A MMDELTAY byte ,.,.,..,,.,,,.,..

MMDELTAY bits defined as follows:
Bi s 7, 6, 5 1 4, 3, 2, 1, 0 • Delta movement in 2' s

complement no ation
MMOELTAY DFB 0 ;Mega I mouse del~a Y register

7 -- ____ 6 ___ 5 ____ 4 ___ 3 ____ 1 ___ 1 _ __ 0 __

489 *I
490 *I Self/ JMMouse l Status!S atusJStatus l Status!Status l Statusl
491 *lburnin ! l ast IAN3 11/4sec!VBL lswitchlmove ! system!
492 * I diags !button! l int lint lint lint I I
493 * I

~~~ * 

496 * 
497 * 

4 98 ... 

499 * 

I I I I I I I I 
BIA@~V~~ B¥t~ ~~~~~ 

DIAGTYPE bits defined as follows: 
Bit 7 0 if sel -di~gnoatics get used if BUTNO = 

l/BUTNl = 1 
Bit 7 ~ 1 if burn - in diagnostics get used i f BUTNO • 

1/BUTN1 1 
Bits 6- 0 = Same as INTE'LAG 

Appendix E: Soft Switches 287 



C046: 50 1 * 7 --
C046: 502 *I 
C0 4 6 : 503 * IMMou:rn IMMouse lStatuslStatus lSt tus lStatus lStatus lStatus l 
C046 : 50 4 I now l last !AN3 l l/4~eclVBL !switchlmove lsysteml 
C046: 505 * I button I but ton I lint l int lint l int I IRQ I 
C0 46: 506 * I 1 _ __ 1 ___ 1 ___ , _ __ 1 _ __ , ___ 1 _ __ 1 

C046: 507 * INTFLAG byte """"" 

C046: 509 * INTFLAG bi t s defined as follows: 
C046: 510 * Bit 7 1 if mouse bu ton current l y down 
C0 4 6: 511 * Bit 6 1 if mouse but t on was down on last read 
C046: 512 Bit 5 -Status of AN3 
C0 4 6: 513 * Bit 4 1 if quarter-second i nterrupt ed 
C046: 514 * Bit 3 l if VBL interrupted 
C04 6 : 515 * Bit 2 1 if Mega II mouse switch i nterrupted 
C0 46: 516 * Bit 1 1 if Mega II mouse movement interrupted 
C046: 517 * Bit 0 - l if system !RQ line is asse r ted 
C0 4 6 : C0 4 6 519 DIAGTYPE EQU * ;0/1 Self /burn-in rl i ;icrrinqt- i r'l 

C0 4 6:00 520 I NT FLAG DFB 0 ;Int errupt flag register 
C047 : 00 521 C.'...RVBLINT DFB 0 ;Clear t he VBL/3. 7 5Hz i n terrupt 

flags 
C0 4 8 : 00 522 CLRXYINT DFB 0 ;Clear Mega II mouse inter.x;J,!.pt flags 
C049:00 523 DFB 0 ;Reserved for future sys terr 

expansion 
C0 4A : 00 52 4 DFB 0 ;Reserved for future system 

expansion 
C0 4B : OO 525 DFB 0 ;Reserved for future system 

expansion 
C04C:OO 526 DF B 0 ;Re5erved for future system 

expansion 
C04D:OO 52? DFB 0 ;Reserved for fut ure system 

expansion 
C04E : 00 528 DFB 0 ;Reser ved for future system 

expansion 
C0 4F : OO 529 DFB 0 ; Reserved for future system 

expans i on 
C050:00 530 TX TC LR DFB 0 ;Switch in graphics (not text) 
C05l:OO 531 TXTSET DFB 0 ;Switch in text (not graphic:s..> 
C052:00 532 MIXCLR DFB 0 ;Clear mixed mode 

.:- .. 
't' . I; 

C053 : 00 lines 
•. 

533 MI XS ET DF B 0 ;Set mi xed mode (4 text) 
C05 4 :00 534 TXTPAGEl DFB 0 ;Switch in text page 1 
C055:00 535 TXTPAGE2 DFB 0 ;Swi tch in t ext page 2 
C056 : 00 53 6 LORES DFB 0 ;Low-resolution graphics 
C057 : 00 537 HIRES DFB 0 ;High- reso l ution g r aphics 
C058:00 538 SETA.NO DFB 0 ;C l ear annunciator 0 

288 Appendix E:: Soft Swi tches 



C059:00 
COSA: 00 
C05B:00 
case: oo 
C05D: 00 
C05E:00 
COSF:OO 
C060:00 
COH: 00 
C062:00 
CD63:00 
C064:00 
C065: 00 
C066:00 
C067:00 

C068 ~ 

C068: 
C068: 
C068 : 
C068: 
C068 : 
C068: 

C06B: 
C06 B: 
C068: 
C06B: 
C068: 
C058: 
C068: 
C068: 
C068: 
C068: 
C068: 
C0 68 ~ 

C068: 
C068;00 
C069:00 

C06A:00 

539 CLRANO DFB 0 ;Set annunciator 0 
540 SETANl DFS 0 ;Clear annunciator! 
SU CLRANl DFB 0 ;Set annunciator 1 
542 SETAN2 DFB 0 ; Clear annunc i ator 2 
543 CL RAN DFB 0 ;Set annunciator 2 
SH SETAN3 DF9 0 ;Clear annuncia.tar 3 
5 45 CLRAN3 DFB 0 ;Se annunciator 3 
5 46 BU'l'N3 DFB 0 ;Read :;iw'tch 3 
547 BUTNO DFB 0 ;Read .switch a (0 key) 
548 BUTN1 DFB 0 ;Read switch 1 (. key) 
549 BUTN2 DFB 0 ;Read ~witch 2 
550 PADDLO DFB 0 ;Read paddl@ 0 
551 DFB 0 ;Read paddle 1 
552 DFB 0 ;Read paddle 2 
553 DFB 0 ;Read paddle 3 

s 55 * 7 6 5 '\ 3 2 1 0 
556 ~1 I I I I I I 
557 *IALTZP IPAGE2 IRAMRD IRAM!r.'RTIRDROM ILCBNK2 IROMB IINTCX I 
558 * l~tatus lstatusl5tatusls atus lst tusJstatus lstatuslstatusl 
559 *I I I I I I I I I 
560 *I I I I I I I I I 
'5 61 * 

563 * 
564 " 
565 * 
566 * 
567 * 
568 * 
5'7 0 " 
511 * 
57 2 * 
573 "' 
575 * 
576 * 
577 lit 

579 
580 

581 

STA'I'EREG :status byte 

STATEREG bits defined as fo lows: 
Bit 7 ~ ALTZP status 
Bit 6 PAGE2 status 
Bit 5 RAMRD seatus 
Bit 4 = RAMWRT s tatus 
Bit 3 • RDROM status (read only RAM/ROM (0/1}) 
Important note: Perform two reads t o $C083; hen change 
STATEREG o change LCRAM/ROM banks (0/ 1) ; keep the 
l anguage card write enabled. 

Bi 2 
Bit 1 
Bit 0 
STATEREG 

LCBNK2 sta us 0 = LC bank O, l 
ROMBANK status 
IN'J'CXROM status 

DFB 0 ; St~te register 
DFB 0 ;Reserved for future 

expansion 

LC bank l 

.sy.stern 

DFB 0 ;Reserved for future sy:;item 
expan:;iion 

Append[x E: Sott Switches 289 



C06B:OO S82 DFB 0 ;Reserved for future system 
expansion 

C06C:00 583 DFB 0 ;Reserved for future system 
expansion 

C06D:00 584 TESTREG DFB 0 ;Test mode bit register 
C06E:OO 585 CLRTM DFB 0 ;Clear teat mode 
c06F~oo 586 ENTM DF.B 0 ;Enable test mode 
C070:00 587 l?TRIG DFB 0 ;Trigger the paddles 
C07l: 588 DS 15,0 ;ROM interrupt code jump table 
COBO: 00 590 DFB 0 ;Sel LC RAM bank2 :rd, wrl protect LC 

RAM 

C081:00 591 RO.MIN DFB 0 ;Enable ROM read, 2 reads wrt enb LC 
RAM 

C082:00 592 DFB 0 ;Enable ROM read, wrt protect LC RAM 

C083~00 593 LCBANI<2 DFB 0 ;Sel LC RAM bank2,. 2 rds wrt enb LC 
RAM 

C084:00 595 DF:S 0 ;Sal LC RAM bank2 rd, wrt protect LC 
RAM 

C085:00 596 DFB 0 ;Enable ROM read, 2 reads wrt enb LC 
RAM 

C086:00 597 DFB 0 ;Enable ROM read, wrt protect LC RAM 
COS?: 00 598 DFB 0 ;Sel LC RAM bank2,. 2 rds wrt enb LC 

RAM 
C088:00 600 DF8 0 ;Sel LC RAM ban kl rd, wrt p:rotect LC 

RAM 
COB9:00 601 DFB 0 ;Enable ROM read, 2 r eads wrt enb LC 

RAM 
C08A: 00 602 DFB 0 ;Enable ROM read, 'l't1rt. protect LC RAM 
coea:oo 603 LCBANKl DFE 0 ;Sel LC RAM bankl, 2 rds wrt enb LC 

RAM 
C08C:OO 605 DFB 0 ;Sel LC RAM bankl rd, wrt protect LC 

RAM 
C08D: 00 606 DFB 0 ;Enable ROM read, 2 reads wrt enb I.IC 

RAM 
COSE: 00 607 DFB 0 ;Enable ROM read, wrt protect LC RAM 
C08F:OO 608 DFB a ;Sel LC RAM bankl, 2 rds wrt enb LC 

RAM 

0000:610 DEND 

0000:612 CLRROM EQU $CFF'F ;Switch Ollt $CB ROMS 

Appendb< E: Sott Switches 



Table E-1 
Symbol table sorted by symbol 

corn ALTCHARSET C061 BUTNO C062 BUTNl C063 BUTN2 
C060 BUTN3 C02C CHARROM C034 ClOCKC t C033 ClOCKDATA 
cooo CLRSOCOL COOC CLR80VID COOE CLRALTCHAll. C059 CLRANO 
COSB CLRANJ C05D CLRAN2 C05F CLRAN3 CFFF Cl.'RROM 
C06E CLRTM C047 CLKVBUNT C048 CLRXYlNT C036 CYAREG 
C026 DATAREG co 6 DIAGTYPE C031 DISKREG C037 DMAREG 
C06F ENTM C057 HIRES C02P HORIZC T C041 INTEN 
C016 Il\'Tf'LAG cooo JOADR COlO KBDSTRB cooo KBD 
C025 KEY MOD REG C027 KMSTATUS C02B LANGSEL COBB LCBANKl 
C083 LCBANK2 C056 LORES COS2 MIXCLR C053 MIXSET 
C04'1 MMD El TAX C045 MMDELTAY C021 MONOCOLOR C024 MOUSEDATA 
C029 EWVIDEO Co64 PADDLO C070 P11UG COJ8 RDSOCOt 
COlF RD80VID C016 RDALTZP C017 RDC3ROM C003 RDCAilDRAM 
C015 RDCXROM C01D RDH1RES C011 RDLCBI\K2 C012 RDLCRAM 
C002 RDMAl RAM COlB RDMIX CO,lC RDPAGE2 C013 RDR.AhffiD 
COH RDRAMWRT CO] RD TEXT C019 RDVBLBAR C028 ROM BANK 
C081 UOJ\HN C032 SCANINT C03B CCADATA C039 SCCAREG 
C03A SCCBDATA C038 SCCBREG C001 ET80CO COOD SET80V1D 
COOF ETALTCHAR C009 SETALTZP C058 SETANO C05A SEl'ANl 
C05C SETAN2 COSE SETAN3 COOA SETINTC3ROM C007 SETI TCXROM 
COOB SETSLOTC3ROM C006 SETSLOTCXROM COOS SETSTDZP C035 SHADOW 
C02D SL TROMSEL C03F SOlJNDADRH C03E SOUNDADRL C03C SOUNDCTL 
C03D SOUNDDATA C030 SPKR Co68 STATEREG C022 TB COLOR co6 
C06D TESTREG C050 TXTCLR C054 TXTPAGEl COSS TXTPAGE2 
C051 TXTSET C02E VERTCNT C023 VGCINT C005 WRCARDR.t\Jvll 
C004 WRMAJNR.AM 

Appendrx E: Sof Swltche.s 291 



Table E-2 
Symbol table sorted by address 

COOO IOAD R 
C002 RDMAl.NRAM 
coo6 SETSLOTCXROM 
COOA SETINTC3ROM 
COOE CLRAL TCHAR 
C012 RDLCRAM 
C016 RDALTZP 
COlA RDTEXT 
COIE ALTCHARSET 
C023 VGClNT 
C027 KMSTATUS 
C02C CHARROM 
C030 SPKR 
C034 CLOCKCTL 
C038 SCCBREG 
C03C SOUNDCTL 
C041 INTEN 
C046 INTFLAG 
C051 TXTSET 
C055 TXTPAGE2 
C059 CLRANO 
C05D CLRAN2 
C061 BUTNO 
C068 STA TEREG 
C070 PTR.TG 
CFFP CLRROM 

COOO KBD 
C003 RDCARDRAM: 
C007 SETINTCXROM 
COOB SETSLOTC3ROM 
COOP SET AL TCHA.R 
C013 RDRAMRD 
C017 RDC3ROM 
corn RDM]X 
COlF RDSOVlD 
C024 MOUSEDATA 
C028 ROMBANK 
C02D SLTROMSEL 
co31 DISKREG 
C035 SHADOW 
C039 SCCAREG 
C03D SOUNDDATA 
C044 MMDELTAX 
C047 CLRVBLINT 
COS2 MIXCLR 
C056 LORES 
C05A SETANl 
COSE SETAN3 
0062 BUTN1 
C06D TESTREG 
C081 ROMIN 

COOO CLRBOCOL 
C004 WR.MAINRAM 
COOS SETSTDZP 
COOC CLRBOVID 
COIO KBDSTRB 
COl 4 RDRAMWRT 
C018 RD80COL 
COlC RDPA.GE2 
C021 MONOCOLOR 
C025 KEYMODREG 
C029 NEWVIDEO 
C02E VERTCNT 
C032 SCANINT 
co36 CYAREG 
C03A SCCBDATA 
C03E SOUNDADRJ 
C04S MMD ELTAY 
C048 CLRXYINT 
C053 MIXSET 
C057 HIRES 
COSB CLRA l 
GOSF CLRAN3 
C063 BUTN2 
C06E CLRTM 
C083 LCBANK2 

COOl SETSOCOL 
COOS WRCARDRAM 
C009 SETALTZP 
COOD SET80VID 
COl 1 RDLCBNK2 
C015 RDCXROM 
C019 RDVBLBAR 
C01D RDHIRES 
C022 TBCOLOR 
C026 DATAREG 
C02B LANGSEL 
C02P HORIZCNT 
C033 CLOCKDATA 
C037 OMA.REG 
C0.3B SCCADATA 
C03P SOUNDADRH 
C046 DIAGTYPE 
C050 TXTCLR 
C054 TXTPAGEl 
C058 SETANO 
CO 5C SE'f A.t'l"2 
co6o BUTN3 
Co64 PADDLO 
C06F ENTM 
C08B LCBANK1 



Appendix F 

Disassembler I 
Mini-Assembler 
Opcodes 

Th.is append.ix lisl:.5 all of lhe 65CBI6 inslructio~ arid the instruction for.mats that the 
disassembler uses to define the contents of the disasscm.bJ.y. You may wish to hand~ 
assemble various short routines. This listing provides you with a ready reference for 
the 6SC816 instructions and addr,essing modes. Sometimes as the table begins a new 
alphabetic llem in the name field, a line break is inserted for re:adabilily. For c~es 
where the inslructions ~re dosely rclJ.tcd to each olhe:r (such as branch instructions, 
push instructions, and puU instructions), lhe line break is omiued 

Int.he table that follows, the addressing modes oF the processor are abbrevfat,ed as 
shown on the folJowing page. 

293 



Abbrevla tlon for 
cddre:sslng mode 

# 

(a) 

(a,x) 
(d) 
(d),y 
(d,x) 
( r ,s),y 
a 
a,x 
a,y 

cc 
al 
al,x 
d 
d,x 
d,y 

r,s 
rl 
s 
xya 
[d) 

fdl,y 

Actua l addressing 
mode tepreHnted 

Immediate 
Absolute indirect 
Absolute [ndexed indirect 
Direct indirect 
Direct indirect indexed 
Direct indexed indirect 
Stack relative indirect indexed 
Absolule 
Absolu1e [ndexed (with x) 
Absolute indexed (with y) 
AccumulalOr 
Absolute long 
Absolute indexed long 
DirccL 
Direct indexed (with x:) 
Direct indexed (with y) 
Implied 
Program counter relative 
Stack relative 
Program counter relative long 
Stack 
Block move 
Direct indirecl long 
Direct indirect indexed Jong 

294 Appendix F: Disassembler/Mini-Assembler Opcodes 



Cpcod• Opcode 
Name Mode !Bytes number Name Mode Bytn number 

ADC (d) 2 72 BIT d 2 24 
ADC (d),y 2 71 BIT d,x 2 34 
ADC (d,x) 2 61 BIT it 2 G) 89 
ADC ( r ,s),y 2 73 BIT a 3 2C 
ADC d 2 65 BlT a,x 3 3C 
ADC d,x 2 75 

BMI 2 30 ADC 2 63 r r,s 
BNE 2 DO ADC ldl 2 67 r 
BPL 2 10 ADC fd l,y 2 77 BRA 2 80 ADC ;; 2 (3) 69 r 

ADC a 3 6D BRK 2 00 
ADC a,x 3 7D 13RL rl 3 82 
ADC a,y 3 79 BVC r 2. 50 ADC al 4 6F BYS r 2 70 ADC al,x 4 7F 

C LC 1 18 
,'\t\D (d) 2 32 CLO 1 08 
A!\D (d),y 2 31 cu 1 58 
AND (d,.x) 2 21 CLV I B8 AND (r,s),y 2 33 
AND d 2 25 CMP (d) 2 D2 
AJ\D d ,x 2 35 CMP (d),y 2 D I 

A!\D r,s 2 23 CMP (d,x) 2 Cl 
AND Idl 2 27 CMP (r,s), y 2 D3 
A!\D [d J, y 2 37 CMP d 2 cs 
AND 'ii 2 (3) 29 CMP d,x 2 D5 
AND a 3 2D C.MP r ,s 2 C3 
AND a,x 3 3,0 CM P [di 2 C7 

AND a,y 3 39 CMP [dl,y 2 D7 
AND al 4 2F CMP # 2 (3) C9 
AND al ,x 4 3F CMP a 3 CD 

CMP a ,.x 3 DD 
AS L Ar.c I OA CMP a,y 3 D9 
ASL d 2 06 CMP al 4 CF 
ASL d,x 2 16 CMP a l,x 4 DF 
ASL a 3 OE 
ASL a ,x 3 1E COP 2 02 

BCC r· 2 90 CPX d 2 E4 
BCS r 2 BO CPX .If 2 (3) EO 
DEQ 2 FO CPX a 3 EC 

Appendix F: DlsosSEtmblar/M~nl-Assembler Opcodes 2'9S 



Opcode Op cod• 
Name Mode By tu number Name Mode Byt•1 number 

CPY d 2 C4 JSL al 4 22 
C?Y # 2 (3) co JSR (a,x) 3 PC 
CPY a 3 cc JSR a 3 20 

DEC Ace 1 3A LDA (d) 2 B2 
DEC d 2 C6 LOA (d),y 2 Bl 
DEC d,.x 2 D6 LOA (d,x) 2 Al 
DEC a 3 CE LOA (r,s),y 2 B3 
DEC a,x 3 DE LOA d 2. AS 
DEX 1 CA LDA d,x 2 BS 
OEY l 88 LDA r,s 2 A3 
EOR (d) 2 52 LOA [d] 2 7 

EOR (d),y 2 51 LOA [d l,y 2 ll7 
EOR (d,x) 2 41 LOA # 2 (3) A9 

EOR (r,s), y 2 53 LDA a 3 AD 

EOR d 2 45 LD a,x 3 BD 
EOR d,x 2 55 LDA a,y 3 B9 
EOR r,s 2 43 LDA al 4 AF 
EOR [d) 2 47 LOA al,x 4 BF 
EOR fd) ,y 2 57 LDX d 2 A6 
EOR # 2 (3) 49 lDX d,y 2 B6 
EOR a 3 40 LDX # 2 (3) A2 
EOR a ,x 3 50 LOX a. 3 Al! 
EOR a,y 3 59 l..DX ,y 3 BE 
EOR al ti 1F 

lDY d 2 A4 EOR al ,x 4 SF 
LDY d,x 2 B4 

INC Ace 1 lA l.DY # 2 (3) AO 
INC d 2 E6 LOY a 3 AC 
INC d,x 2 F6 LDY a,x 3 BC 
INC a 3 EE 

LSR Ace ] 4A INC a,x 3 FE 
LSR d 2 46 lNX E8 LSR d,x 2 56 1J\1Y ca 
LSR a 3 4E 

JML (a) 3 DC LSR a,x 3 SE 
JMP (a) 3 6C MV 3 54 JMP (a ,x) 3 7C 

xya 
MVP 3 44 JMP a 3 4C xya 

JMP al 4 SC NOP I EA 

296 Appendix F: Disassembler/Mlni·Assembler Opcodes 



Opcode Opcode 
Name Mode Bytet number Name Mode Bytes r11.1mb•r 

ORA . (d) 2 12 ROR Ace 1 6A 
ORA •(d),y 2 n ROR d 2 66 
ORA · (d,x) 2 01 ROR d,x 2 76 
ORA ( r ,s),y 2 13 ROR a 3 6.E 
ORA d 2 05 ROR a,x 3 7E 
ORA d,x 2 15 

R'fl s 1 40 ORA r,.s 2 03 
RTI. s l 6B ORA [dJ 2 07 
RTS s l 60 ORA [d).y 2 17 

ORA # 2 (3) 09 SBC ( d) 2 F2 
ORA a 3 OD SBC ( d),y 2 F2 
ORA a,x 3 10 SBC ( d,x) 2 El 
ORA a,y 3 19 SHC ( r ,s),y 2 F3 
ORA al 4 OF SBC d 2 ES 
ORA • ~l.x 4 lF SBC d,x 2 FS 

SBC r ,s 2 E3 PEA :; 3 F4 
SBC [d ] 2 E7 PEI s 2. D4 
SBC [d],y 2 F7 PER s 3 62 
SBC # 2 (3) E9 PHA s 1 48 
SBC 3 ED a PHB s l 8B soc 3 FD a,x PHD ] OB BC a,y 3 F9 PllK s 1 4B 

llC al 4 EF PHP l 08 BC al,x 4 FF PJIX s 1 DA 
PHY s I 5A SEC 38 

68 .D 1 F8 PLA s l 
SE.I l 78 PLB s 1 All EP ~ 2 E2 PLD s 1 2B 

PlP s 1 28 STA (d) 2 92 
J>LX s l FA STA (d),y 2 91 
PLY s 1 7A STA (d,x) 2 81 

2 
STA (r,s), y 2 93 REP ii'" C2 
STA d 2 85 

ROL Ace 1 2A STA d ,x 2 95 
ROL d 2 z6. STA r,s 2 83 
ROL d ,x 2 36 ST ldl 2 87 
ROL a 3 2E TA [dl,y 2 97 
JlOL a,x 3 3E STA a 3 SD 

STA a,x 3 9D 
STA a,y 3 9C) 

TA al 4 BF 
STA aJ,x 4 9P 
STP l DB 

Append Ix F: Dlsossembler JM lnl-Assembler Opcodes '2:97 



10pcod• 
Nome Mode· Bytes 1number 

STX d 2 86 
TX d,y 2 96 

STX a 3 SE 
TY d 2 &i 
TY d,x 2 91 

STY a 3 BC 

STt: d 2 64 
STZ d,x 2 74 
STZ a 3 9C 
STZ a,x 3 9E 
TAX 1 AA 
TAY AB 
TCD 1 sn 
TCS 1 1Il 
TDC 1 7B 

298 Apperodlx F: Dlsassembler1Min[·Assembler Opcodes 



The Control Pa,nel 

1hc Control Panel firmware allows you to experiment wilh different syst.em 
contlgurations and change che system time. You can also permanently score any 
changes in lhe battery-powered RAM (called Battery RAM). The Battery RAi.\11 is a 
Macintosh dock c.h1p I.hat has 256 bytes of bauery-pawered RAM for system­
parameler storage. 

The Control Panel program is a ROM-resident hardware configuration program.. It js 
invoked when the system is powered up if you press the Option key. An alternate mearu 
of invoking the Control Panel is to perform a co!d start by pressing Control and the 
Option key al Lhc .same time and then Reset The Desk Manager can also call t.he 
Control Panel aind affect the values specified in this appendix. 

Contro~ Pane~ parameters 
The following arc the electio11.s and options available for each Control Panel menu . A 
chcckmark C..J) indicates the defaulc value for each option. 

299 



Printer port 
Sets up all related functions for the printer port (slot 1). OptioM are as follows: 

Option Choices 

Device connect ..J Printer 
Modem 

Line length ,1 Unlimited 
40 
n 
80 
132 

Delete first LF after CR ..J o 
Yes 

Add LF after CR ../ Yes 
No 

Echo .,,J o 

Buffering 

Baud 

Yes 

" 0 Yes 

50 
75 

110 
134.5 
150 
300 
600 

1200 
1800 
2400 
3600 
4800 
7200 

" 9600 
19.,200 

300 Appendix G : The Control Panel 

Option Choices 

Data bits ..J 8 
7 
6 
5 

Stop bilS ..J 2 

Parity O dd 
Even 

..J None 

DCD handshake .J Yes 
No 

DSH/DTR handshake ..J Yes 
No 

XO /XOFF handshake Yes 
.J No 



Modem port 
Secs up all related functions for the modem port. (slot 2). Oplions are as folJows; 

Option Cho tees 

Devjcc connected -.J Modem 
Printer 

Lloe length ..J Un:limited 
40 
72 
80 

132 

Delele fast LF after CR ../ No 
Yes 

Add LP after CR .J Yes 
No 

Echo ..J No 

Buffering 

Baud 

Yes 

..J No 
Yes 

50 
75 

110 
134.5 
150 
300 
600 

,1 1200 
1800 
2400 
36oO 
4800 
7200 

19,200 

Option Choices 

Data bits " 8 
7 
6 
5 

SlOp bits ..J 2 
l 

PariLy Odd 
Even 

-.J None 

OCD hanwhake No 
../Yes 

DSR/DTR handshake ../ Yes 
No 

XON~OFF handshake Yes 
..J No 

Con rol Panel parameters 301 



Display 
Selects all video-specific options. Choosing Type automatically causes color or 
monochrome seleetions 10 appear on the rest of the screen. Options are as follows: 

Lino option Ctiolces 

Type v Color 
Mono 

Culumns ..J 40 
80 

He rtz ..J 60 

Col'c:n/ 
monochrome 
opllons 

·rcxt 
color 

50 

Choices 

(Color name is displayed.) 
Black Orange 
Dark blue Light gray 
Purple Pink 
Dark green Lighl green 
Dark gray Yellow 
Medium blue Aquamarine 
Light blue ..J Whire 
Brown 

Text (Color name is displayed.) 
background Black Brown 

Deep red Orange 
Dark blue Light gray 
Purple Pink 
Dark green Light green 
Dark J;trav YelJow 

-..J tedium blue Aquamarine 
Light bJue White 

302 Ap~endlx G: The Con rel Panel 

Color/ 
monochrome 
options 

Border 
color 

Standard 
colo1:· 

Choices 

(Colo-r name 1s dfspJ'ayed.) 
Black Brown 
Deep red 
Dark blue 
Purple 
Dark green 
Dark gray 

,I Medium blue 
Ught b1ue 

No 
..J Ye' 

Orange 
Light g,ray 
Pink 
Light green 
Yellow 
Aquamarine 
\Vhhe 

'fhe Standard colors option tndkates whether 
your chosen colm match Lhe Apple sr.andarcl 
values. If you select Yes, Lhe current colors are 
swicc:hcd co Apple ta.ndard colors. 



Sound 
Allows system volume and pitch to be altered via an indicator bar. The defaull value ts 
in lhe middle of eac:h range. 

Spe,ed 
AllOY.'S default system speed of either normal speed (1 Miiz) or fasc speeds (2.6/2.8 
RAM/ROM MHz). Available options arc as foUows: 

O.ptron Choices 

System speed i/ Fast 
Normal 

RAM disk 
Allo'11.'S default amount of free RAM Lo be used for RAM disk. Options are as rollows: 

Mjnimurn free RAM for RAM disk: (minimum) 
Maximum free RA..\1 for RAM: disk (maximum) 

Graduations between minimum and maximum are de~ermined by adding or 
subtracting 32K from the RAM size !hat is displayed. Llmilcd to zero or the largest 
selectable size Default RAM disk size is O bytes minimum, 0 bytes maximum. RAM disk 
stze ranges from 0 bytes Lo large:>t selectable RAM disk size 

the amount of free RAM {in kilobytes) for the Wf Jlsk is displayed on the screen ln 
the formal xxx.xxK Free RAM equals I.he total system RAM minus 256K. 

The current RAM disk size is also displayed on the screen The currem RMI disk size 
can be determined by one of lhe RAM disk driver comm.ands. 

1ne following message will be displayed on lhe screen; 

rc~al RAM ln use: XXXY.XK 

Tot~l RAM in use equals tot.al sy:sccm RAM minus totaJ free RAM. 

The total rree HAM disk space will be displayed on the screen. You can dccc.rmim,; Lhe 
amoum of ttltal free RAM by calling lhc Memory Manager. 

Control Panel parameters 303 



Slots 
Allows you to select either built&in device or peripheral card for s loi.s l, 2, 3, 4, 5, 6, 
and 7. Also allows you ro select startup lot or lo scan sloes at startup tirnc. Options 
available are as follows: 

Option 

Slot 1 

Slot 2 

Slol 3 

Slot 4 

Slot S 

Slol 6 

Options 

Choices 

-J Printer port 
You.r card 

..J Modem pore 
Your card 

.../ Built-in text display 
Your card 

..J Mouse pon 
Your card 

,1 SmanPort 
Your card 

.J Disk port 
Your ca.rd 

Option Choices 

Slot 7 Built-in AppleTalk 
..J Your card 

Startup loL .J Scan 
1 
2 

3 
4 
s 
6 
7 
RAM disk 
ROM disk 

Allows you lO select the keyboard layout, text display Janguage, key rcjX!at speed , and 
defay to key repea t to use advanced fearure . Layouts and languages are displayed that 
correspond to I.he hardware. Layouts and languages not available with yoor hardwaw 
(keyboard micro and Mega Tl) are not displayed. 111e information about the layouts 
and languages that are available comes from the keyboard micro al power-up tm1e. 
Options are as follows: 

Option Choices Option Choices 

Display Chosen from Table G-1 Repeat 4 char/sec 
language speed 8 char/sec.: 

Keyboard Chosen from Table G-1 11 char/s~c 

layout 15 char/sec 
..J 20 char/sec 

Keyboard ..JNo 24 char/se 
buffering Yes 30 d1ar/sec 

40 Lh r/sec 

Repeat .25 .St:L 
delay .50 sec 

.J 75 sec 
1.00 sec 
J\o rt:pca1 

304 Appendix G: The Control Panel 



Option 

Double-dick 
time 

Cursor nash 
rate 

Tobie G · l 
Language options 

Number ASCII 

0 EngJjsh 
l English 
2 French 
3 Danish 
4 Spanish 
5 lla lian 
6 German 
7 Swedish 
8 Dvorak 

Ctlolces 

1 lick = 1/6o sec 

SO licks (;>fow) 

40 ticks 
,J 30 licks 

20 ticks 
10 ticks (fas[) 

1 tick = 1/60 sec 

0 ticks (no flash) 
6o ticks 

..J 30 tioo 
15 ticks 
IO licks (fast) 

Number 

(U.S.A.) 10 
(U.K) 11 

12 
13 
14 
15 
16 
17 
18 

9 French Canadian 19 
A Flemish l A 
B Hebrew 1B 
c Japanese 1G 
D Arabic lD 
E Greek lF. 
F Turktsh lF 

Advanced features 

Shift caps/ ..J 0 

lowercase Yes 

Past space/ ../No 
delete keys Yes 

Dual speed -.J Normal 
keys Fasl 

High-speed ..J No 
mouse Yes 

ASClil 

Finnish 
Portuguese 
Tamil 
Hlndi 
Tl 
T2 
T3 
T4 
TS 
T6 
1.1 
I2 
L3 
L4 
LS 
L6 

for the language options, item.$ 0- 7 are available to conl.rol Lhe display language. 
Items 8 and 9 conlrol llhe keyboard layout 

(The keyboard microprocessor provides the pointer for the appropriate ASCII value 
listed in Table G-1.) 

Control Panel parameters 305 



Clock 
Al.lows you to $et i:he time and date and Lime/date formaLC>. Options are as follows: 

Option Choices Option Oiolce:s 

Mon[h 1- 12 Hour 1- 12 or 0-23 

Day 1-31 (depends on 
Format selecc:ed) 

Year 1904-2044 
Minute 0- 59 

format ..J MM/DD/YY 
DD/ MM/VY Second 0-59 
YY/ MM/DD format .../AM-PM 

24-hour 

Quit 
Returns lo calling application or, if called from kc}'board, performs a startup function. 

Battery powered RAM 
The Baucry RAM i.s a Madmosh clock chip that has 256 bytes of bauery-powered RAM 
used for system-parameter storage. The AppleTalk nod number is stored in the 
Battery RA.\1, set by the AppleTalk firmware. 

+ Note: The Battery RAM is not for application program use. 

The Bauery RAM must include encoded bytes for alJ options that can be selected from 
lhe Control Panel. Standard setup values are placed inlO Bauery RAM during 
manufacturing However, lhe keyboard layout and display language are determined by 
tl1c kcyhoon.l used. 

Hems th.at can be changed by manufacturing and the Control Panel program can also 
be changed by your application program; however, only the Miscellaneous Tool Sel 
Battery RAM routines or another Apple-approved ulility program can make changes 
to Battery RAM. lf the changing program is nQ[ an Apple-:ipproved utility, Bauery 
RAM: wiU be severely damaged and Lhe system will become inoperative. If Bauery RAM 
ts damaged and inoperative (or the battery dies), the ftrmwa.re will automatically use 
the Apple stand~rd values to bring up the system. The bauery can be replaced, and 
you can enter lhe Control Panel program to restore the system to 1ts prior 
configuration. 

306 Appendix G: The Control Panel 



Control Panel at power~up 

At power-up, the Bacrcry RA..M is checksummed. If the Battery RAM fail.s iLS check.sum 
wst, the system assumes a U.S. keyboard configuration and English language. Furrhcr, 
t..:.S. standard paramerers are checksummed and moved ro i:hc Bauery RAM storage 

buffer in bank SEl. 'The system continues running using U.S. stand rd pararncwrs. 

Con rot Panel a t oower-up ~07 



Banks $EO and $E l 

special section of Apple IIGS memory i dedicated to the Mega [[ chlp_ The Mega ll, 
also called the Apple-II-on-a-chip, is a separate coprocessor that runs at 1 MHz and 
provides lhe display that the Apple IlGS produces on the video screen. 

To communlcace with the Mega JI, the Apple IIGS either writes directly into bank $EO 
or $El or enables a speciaJ soft swttch, named shadowing. When shadowing is 
enabled, whenever lhe Apple UGS writes into bank $00 (or bank $01), the sy rem 
automatically synchronizes with the Mega ll and writes the same data into bank $EO (rir 
bank $El). 

Figure H-1 depicts the layout of the memory in these banks of memory. Some of this 
memory is dedicated lO display areas, some of It is reserved for firmware use, and 
some of il is declared as free space and is managed by the Memory Manager_ 

Figure H-1 hows the location of lhe various functions of Apple IIGS banks SEO and 
SE1. In the figure, the nolatlon K means a decima] value of 102.4 bytes, and the 
notation page means hex $100 bytes. 

•:· Note.- In Figure H-1, I.he memory segments called free space are available through 
the Memory Manager only. 

308 



SFFFF 
SEO mo n longuage cod SE I aux language card 
$20 pages $20 pogel 
(8K res& ved) (8K reserved) 

SEOOO 

Ba k SOO Boni< 001 Bonk $00 Bonk SOl 
SlO pages SlO pages SlO poges $10 pages 
(4K reserved) (4K reserved) (4K reserved) (4K reserved) 

SDOOO 

1/0 (olwavs actlve) 1/0 (always oc \1e) 

scooo 
$20 pages 
(BK ee space) 

lo-- SAOOO 

S60 pages 
(24K ree !DOC9) 

$8000 - Super I-Res, 
($6000-$9 FF) 

$7000 ,Graphlcs 

$6000 

Double HI-Res page two Doub e Hl-Qas page two 
($4000-SSFFF) $5000 ($4000-$5FFF) 

Graphics Grapi'llcs 

$4000 

Double Hi-Res page ono 
CS2000-$3FFF) I'-53000 

Double HI-Res page one 
(S2000-S3HF) 

Grcphlcs Graphics 

52000 
Sl4 pages Sl4 pages 
(SK reserved) {SK reserved) 

so coo 
Text Page 2 Te><t Pago 2 

$0800 

Te Page 1 Text Page 1 
$0AOO 

54 poge~ S4 pages 
( l K reserved) 

soooo 
( 1 reserved) 

Figure H-1 
Memory mop of banks SEO and SEl 

Appendfx H: Banks SEO and SE 1 309 



Using banks $ED and $El 
You can use graphics memory located in memoiy banks $EO and SEl or lhe free space 
via lhe Memory Manager; howeve r, you musl exercise caution to ensure l:ha: t you don't 
use a reas lhaL arc reserved for machine use. 

Free space 
Eighty hexadecimal pages, or 32.K bytes, jn lhe area labeled free space can be used; 
however, lhis area must be accessed through I.he Memoiy Manager. (1be Memory 
~fanagcr Cl1l be called lhrough lhe Apple IIGS Toolbox.) If you try to use this space 
without first calling the Memory Manager, you will cause a system failure. 

Video buffers nol needed for screen display may be used for your appljcations. 

•!• NOllJ: Video buffers are used by firmware only for video displays because there is no 
way lo determine which video modes are needed by your applications. 

Language-card area 
The language-aud area is switched by the same sofl switches used to swi tch Apple n 
simulation language cards in banks $00 and SOl. Before switching language-card banks 
(or ROM for RA1\1 or RAM for ROM), Lhe current configuration musl be saved The 
configuration must be res tored after your subroutine is flrushed accessi.ng the switched 
area . 

Shadowing 
The shadowing ability of the Apple l1GS can be used by applications to display overlay 
data on the screen. Normally, if an application wants to display an overlay on an 
cxisling screen, it musl save the data in the area thal is over\vriucn. Because of the 
shadowing capabilities of the Apple 1IG5, this task is simplif'ied. 

When shadowing is turned on, you d.raw your original screen display into banks 500 
and $01 . To display the overlay, ·r.um shadowing off and write directly into ban.ks $EO 
and SE1 . This affecrs only the display and not the original screen data that rs also 
present in banks SOO and $01 . \Vhcn you arc finished wilh the overlay, enable 
shadowing again and sjmply read and write lhe screen dau (use MVN or l\1VP for 
speed) into lhe current screen area using banks 500 and $01 . This will have no clfect on 
banks $00 or $01 , but ic will restore the displ<ly co its appearance before the overlay 
dala was written. 

310 Appendix f-il : Sanks SEO and $El 



accumulator: The register in a compuler's central 
processor or microprocessor where mosl 
computations are performed. 

ACIA: Abbreviation for Asynchronous 
Commun(caltons !mer.face Adapter, a type of 
communications IC used fn some Apple 
computers. An ACIA converts data from parallel 
lo serial form and vice versa. It handles serial 
transmission and reception and RS-232-C signals 
under the control of its internal registers, which 
can be set and changed by firmware or software_ 
Compare CC. 

ADB: See Apple D kTop Bus. 

address: A number that specifies the location of a 
singfe byte of memory. Addresses can be given as 
decimal or hexadecimal integers. The Apple rrcs 
has addresses ranging from O lo 16,777,215 
(dedma.1) or from $00 00 00 to SFP FF PF 
(hexadecimal). A cornplete address consists of a 
4-bit bank number ($00 to sm followed by a 16-
blt address within that bank ($00 00 to SFP FF). 

App e DeskTop Bus (ADB): A low-speed serial 
input port that supports the keyboard, the ADB 
mouse, and additional input devices, such as hand 
controls and graphics tablets. 

Apple key: A modifier key on the Apple ncs 
keyboard, marked wilh both an Apple icon and a 
spinner, the icon used on the equivalent key on 
some Macinlosh keyboards. It performs the same 
functions as I.he o key on si.andard Apple II 
compulers. 

AppleTal.k: Apple's local-area network for 
Apple II and Macintosh personal computers and 
lhe Laser'Wrlter and lmagcWriter IT printers. Like 
th Macintosh, the Apple ncs has lhe AppleTalk 
interface built in. 

AppleTalk connector: A piece of equipment 
consisting of a connection box, a short cable, and 
an 8--pin miniature DIN connector that enables an 
Apple UGS to be part of an AppleTalk network. 

Apple ll: A family of computers, including the 
original Apple 11, the App!e II Plus, the Apple Tie, 
lhe Appl He, and the Apple IIGS. Compare 
standard Apple U. 

Apple IlGS Prog.raoimer's orkshop (APW}. 
The development environment for Lhe Apple HGS 
computer. It consists of a set of programs that 
fadlitate the writing, compiHng, and debugging or 
Apple llGS applications. 

APW: Sec Apple llGS Programmer' 
Workshop. 

assembler. A program 1.hal produces object 
files (programs lhal contain machine-language 
code) from source files written in assembly 
language. 'Ille opposite of dJsassembler. 

backgrol.Uld printlng; Printing from one 
application while another application is running_ 

bank; A 64K (65,536-byte) portion of the 
Apple IJGS internal memory. An individual bank is 
specified by the value of one of the 65C816 
microprocessor's bank registers. 

311 



bank-switched memory: On Apple n 
computers, lhat part of lhe language-card 
memory in which two 4K portions of memoIY 
share the sam address range ($0000 co SDFFF). 

BASICOUfi The routine that ouipuls a character 
when lhe 80-column f.umware is active. 

Battery :RJUt: RAM memory on the Apple IlGS 
dock chip. A ba uery preserves lhe clock set.tings 
and the RAM ooments when the power is off. 
Control Panel se:u.ings are kept in the Battery RAt\1.. 

baud rate: The rate at which serial data is 
transferred, measured in signal cransjuons per 
second. h takes a pprox.imatcly 10 signal 
transitions o transmit a single character. 

bit: A contradion of btnary dtgtl. The smal]est 
unjt of infonnlition a computer can hold The 
value of a bit (1 or 0) represents a simple two-way 
choice, sum a on or off. 

bloc.ki (l) A unit of data scorage o:r u-ansfer, 
typicatly 512 bytes. (2) A contiguous, page-aligned 
region of computer memory of arbitrary size, 
allocated by the Memory Manager. Also called a 
memory block. 

block device: A d~vice that lransfers data lo or 
from a computer in multiples or one block (512 
bytes) of characters at a lime. Disk dri¥es are block 
devioes. Also called block VO device. 

hoot: Another way to say start up. A com pt.Uer 
boots by loading a program inw memory From an 
external storage medium such as a disk. The word 
boot is short for bootstrap /.oad. Starting up is 
often accompUshed by first loading a small 
program, whid then reads a larger program inlO 
memory. The program is said to • pu II itself up by 
its own ootstraps! 

buffer: A holding area in the computer's memory 
(for example1 a prim buffer) where informa£1on 
can be stored by one program or device and Lhen 
read at a different rate by another. 

312 Glossary 

byte: A unit of information consisting of a 
sequence of 8 b~ts. A byte can take any value 
between 0 and 255 ($0 and SF hexadccimaJ). The 
value can represent an i.rutruccion, a number, a 
charac:r.e r, or a logical state. 

catty Oag: A starus bit in the microproccs or, 
used as a.n additional high-order bit with the 
accum.ufator bits In addition, sub1.raclion, 
rotation, and shift operations. 

central processing unlit (CPU); 1ne part o! the 
computer that performs the actual computations 
in machine language. See also mlcr-oproc or. 

character: Any symbol thal has a wid ly 
unde.rslood meaning and rhus can convey 
information. Some characters, uch a leu.er , 
numbers, and puncruation, can be displayed on 
the monitor screen and printed on a printer. Most 
characters are represented in the computer as 1-
byte values. 

clamp: A memory location that contains the 
maximum and minimum excursion positions of 
the mouse cursor when the desktop is in use. 

CMOS: Acronym for complemf!ntary metal oxide 
semtconductor, one of several melhods of making 
integrated dra.dts our of siJicon. CMOS devices 
are cha.ractcr.ize.d by low power consumptioa 

controller card; A peripheral ca.rd that conncccs 
a device such as a printer or disk drive to a 
computer's main logic board and controls I.he 
operation of I.he device. 

Con~ol Panel: A desk ac.c.essory th.at lel.5 the 
user change certain system parameters, such as 
speaker volume, display colors, and configuration 
of sloes and ports. 

control .register: A special register that programs 
can read and wrire, similar to a :soft switch. The 
comrol regislers arc specific locations in the I/O 
space ($Cxxx) in bank $EO; they are accessible 
from bank $00 if VO shadowing is on. 



Control-R et: A combination key troke on 
Applen computers that usually causes an 
Applesofc BASIC program or command lO stop 
immedialely. 

COIIT: The firmware entry point for the Apple n 
charactcr-oulput subroutine. COUT is acLualJy an 
T/O Hnk located in RAM rather than in ROM, and 
so can be modified. to contafn lhe address of the 
presently active character-output subroutine. 

COUfl: An entry point within the Apple U 
character-outpul subroutine. 

C3COUT1: AJso called BASICOUT, thi i lhe 
routine that CO jumps to when the 80-colurnn 
firmware is active. 

data: Information cransferred lO or from, or 
tored in, a computer or other mechanical 

communications or storage device. 

DCD: Abbr viation for Dala Carrier Detect, a 
modem signal indicating that a communkation 
connection has been established. 

elete key: A key on th upper-right comer of 
the Apple Ile, Apple llc, and Apple JIGS 
keyboards that erases the characcer immediately 
preceding (to the left oO the rursor. Similar to the 
Macintosh Backspace key. 

delta; The difference from something the 
program already knows. For example, mouse 
moves arc represented as deltas compared to 
previous mouse locations. The name comes from 
the way malhematidans use lhe Greek leuer delta 
('1) lo represent a difference. 

desk accessory: A smaJl, special-purpose 
program avaifable to the user regardless of which 
application is running. The Control Panel is an 
example of a desk accessory. 

desktop: The visual interface between the 
computer and the user-the menu bar and the gray 
area on the screen. 

devic : A piece of hardware used in conjunction 
with a computer and under the computer's 
control. Also calJed a peripheral devtce because 
such equipment is often physically separate from 
(but attached co) the computer. 

device driven A program I.hat manages the 
1.:r.1.nsfer of information between lhe computer and 
a peripheral device. 

Digital 0 cillator ChJp (DOC}. An integrated 
circuit in the Apple IIGS lhal contains 32 digital 
osdllator , each of which can generate a sound 
from stored digital waveform data.. 

DIN: Acronym for Deutsche lndustrle Normal, a 
European standards organization. 

DIN connector: A type of connector with 
multiple pins i.nstd.e a round outer shiekL 

dittct page: A page (256 bytes) of bank $.00 of 
Apple llGS memory, any part of which can be 
addressed with a short 0 -byte) address because its 

~j§h-grffi:r g~ ef L~!: !lS9fE1IS j§ i!?By§ ~gg !lfiR jij 
middle byte of the address is the value of Lhe 
6san6 direct register. Coresident programs or 
routines can have the.ir own direct pages at 
different locations. The direct page corresponds 
lo th.e 6S02 proce or's zer-o p age. The term direcJ 
page is orten used informally to refer to any pan of 
lhe lower ponion of lhe direct-page/ tack s p ace. 

direct-page/stack space: A portion of bank $00 
of Apple n GS memory reserved for a program's 
direct pag and stack. Initially, the 65C816 
processor's direct l"eglster contains the base 
address of the space, and its stack regl<rter 
contains the highest add.res . In use, the stack 

rows downward from the lop of 1.he direct­
page/stack space, and the lower part or the space 
contains direct-page data.. 

direct regimen A hardware register in the 65C816 
processor that specifics the tart of lhe dirccl page . 

Glossary 313 



disassembler: A program that examines data in 
memory and interprets it as a sel of assembly­
language insLroctions. Assuming the data is ob1ecc 
code, a disassembler gives the user the source 
code that could have generated that object code. 

d.lsk operatlog !!lystem: An operating system 
whose principal function is to manage mes and 
communication wlth one or more disk drives. 
DOS and ProDOS are two families of Apple II disk 
operating systems. 

Disk D drive~ A type of disk drive made and sold 
by Apple Comprner for use with Lhe Apple II, 
Apple TI Plus, and Apple Ile compuccrs. ll uses 
5.25-inch disks . 

DOC: See Djgital Oscillator Chip. 

DOS: An Apple ll clliik operaring system. Acronym 
for D'5k Operattng System. 

Double m-Res: A high-resolution graph[cs 
display mode on Apple II computers with at lea.st 
128K of RAM, cons:isting of an array of poinl.'I 560 
wide by 192 high wilh 16 colors. 

DSR! Abbreviation for Data Set' Ready, a signal 
indicating that a modem has established a 
connection. 

DTR: Abbreviation for Dara Thnntnal Ready. a 
sjgn.a] indicating lhat a terminal is ready to 
cransmil or receive data. 

e flag: One of lhrcc ilag bits in lhe 65C816 
processor that programs use to conuol the 
processor's operating modes. The setting of !.he e 
flag determines whether the proc.cssor is in native 
mode or emuladoo mode. See also m flag and 
JI( flag, 

8-bit Apple m Anolher way of saying standard 
Apple II; !hat is, any Apple u with an 8-bit 
microprocessor C6S02 or 65C02). 

80-column text card: A peripheral card that 
allows the Apple ll, Apple 11 Plus , and App?e lie 
computers to display text in 80 columns {in 
addition to the sLandard -10 columns), 

314 Glossary 

emulate: To operate in a way identical lo a 
different system, For example, Lhe 65C816 
microprocessor in lhe App1e IlGS can carry oul all 
the instructions in a program originally wriuen for 
an Apple II that uses a 6502 microprocessor, thus 
emulating lhe 6502. 

emulation mod.ct The 8-bit configuration of the 
6SC816 processor in which lhe processor functions 
like a 6502 processor in all respects except clock 
speed. 

environment: The compJete set of madllne 
registers associated with a running program. 
Saving the environment allows a program to be 
restored to its original operating mode wilh all of 
its registers ini.acr. a.c; though nothing had 
happened. Saving and restoring ao environment 
is most often a:;.sociared with calling system 
functions or processjng interrupts. 

error: The stale of a computer after it has detected 
a fault in one or more commands sent to it. Also 
callc t1 error conditJon. 

escape code: A key sequence formed by pres.sing 
lhe Esc {Escape) key, followed by pressing another 
key. F...scape codes arc used to control the video 
firmware . 

escape mode: The mode of video-ftrmware 
operation activated by pressing the Esc (Escape) 
key. n allows for moving the cursor, picking up 
characters from the screen, and performing other 
special operations. 

extended Smartpo:rt call: A SmartPort call that 
allows dala lransfer to m from anywhere in lhe 
Ap pie TIGS :,ystem memory space. Compare 
.standard SmanPort call. 

field: A st.ring of ASCII characlers or a value chat 
has a specific meaning to some program. Fields 
may be of fixed length or :rnay be separated from 
oilier rtelds by field delimiters. For example, each 
parameter In a segment header constirutes a field. 



Ormwar-e! Programs stored pem1ancnlly .in 
ROM;. most provide an interface to system 
hardware. Such program (for example, me 
Mooltor program) are built into lhe computer at 
the factory. They can be executed at any time, bul 
cannot be modified or erased from main 
memory. 

format: (n) The form in which information is 
organized or pre.5enLed. (v) 'J'o divide a disk into 
tracks and sectors where information can be 
stored; synonymous with tnmaltze. Blank disks 
must be formatted before I.he user can save 
Information on them for 1.he first time. 

frequency: The rate at which a repeti.tive event 
recurs. ln alternating cunent ()\;CJ signaJs, che 
number of cydes per second. Frequency is usually 
expressed in hertz (cycles per second), 
kUohertz, or m·egahertz. 

GETI.N: The firmware routine lhat a program calls 
to obtain an entire line of characters from the 
currently active input device. 

GLU: Acronym for general logic un ti, a class of 
custom inr.cgrated circuits used as interfaces 
between different parrs of the computer. 

handshaking: The exchang~ of status 
Wonnauon between two dala terminals used to 
control the rr:a.o.sfer of data between them. The 
status information can be the stare of a s1gnal 
connecting lhe two terminals, or it can be in the 
form of a character transmitted with the rest of the 
dala . 

hertz (Hz): The unit of frequency of vibra tlon or 
oscillation, defined as the number of cycles per 
second. Named for the physicist Heinrich Hertz. 
See also kilohertz and megahem. 

hexadedmal: n1e base-16 system of numbers , 
using lhe ten digits 0 through 9 and the six letters A 
chrough F. Hexadecimal numbers can be 
converted easily and direcLly to binary form, 
becall!Sie each hexadedrnal digit corresponds to a 
sequence of 4 bits. ln Apple manuals, 
hexadecimal numbers are usually preceded by a 
doUar sign ($). 

hJgh order: The moot significant part of a 
numerical quanlity. In normal representation, the 
htgh-order bft of a binary value is in the lefunost 
position; likewise, the hfgh-order byte of a binary 
word or longword quantity consists of the 
leftmost 8 bits. 

HI-Res: A high-resolution graphics display mode 
on the Apple I1 family of computers, consisling of 
an array of points 280 wide by 192 rugh with 6 
colors . 

Human lnt.erface Gutdeli.ne.s: A set of software 
devel·opmenl guidelines designed by Apple 
Computer lO support the desktop conccpr and to 
promote uniform user lnterfares tn Apple U and 
Maci.ntosh applications. 

icom An image that graph.kally represenis an. 
object, a concept, or a message. 

index regi.'!Oter: A register in a computer 
processor that holds an index for use in indexed 
addressing. 11le 6502 and 65C816 
microprocessors used in lhe Apple 11 family of 
computers have two index registers, called lhe X 
register and the Y Tegfster. 

imtlallze: See format (v). 

intc:Wgent devJce: A device cootaining a 
microprocessor and a program that allows c:he 
device lO tnlerprel data senl to it as commands 
that the device is to perform. 

interpreter: A program that interprets iLS source 
ffie:s on a statement-by-statement or charactcr­
by-characler bas is . 

Glossary 315 



lnterrnpt handler: A prog;ram, associa~ed with a 
partlo.i1ar external device, that executes whenever 
that device sends an interrupt signal to the 
computer, The interrupt handler performs res casks 
du.ll"ing the interrupt, then returns conU'Ol to the 
computer so it may resume program execution. 

IR.Q: A 6SC816 signal line that, when activated, 
causes an interrupt request to be generated. 

IWM: Abbreviation for lnteg,.ated Wo.z Machtne, 
the rustom clrlp used 1n built-in disk ports on 
Apple computers. 

KEYIN: The fi:rmware entry point that a program 
calls to obta.in a keystroke from the currenlly active 
input device (normally the keyboard). 

kilobJu A unit of measuremenl, 1024 bits, 
commonly used in specifying the capacity of 
memory integrated circuits. Not to be confused 
with kilobyte. 

kilobyte; A unit of measurement, 1024 bytes, 
commonly used in specifying the capacity of 
memory or disk storage systems. 

kilohenz (kHz): A urut of measurement of 
frequency, equal to 1000 hertL Compare 
megahertz.. 

languagescard memory:. Memory with 
addresses between $0000 and $.PFFF on any 
Apple IJ-family computer. lt includes two RAM 
banks in the $Dxxx space, calJed bank-switched 
memory. The language card was originally a 
peripheral. card for the 48K Apple ll or Apple Il 
Plus compurer that expanded the computer's 
memory capacity to 64K and provided space for 
an additi.onal dialea of BASIC. 

last-changeable loc.adom The last localion 
whose value lhc user inquired about through the 
Monitor. · 

3 l 6 Glossary 

link: An area in memory that conralns an address 
and a jump instruction. Programs are wriue.n to 
jump to the link address. Other programs can 
modify thJ& address to make everything behave 
differently. cour and KEYIN are examples of 
IIO links. 

longword: A double-length word. For the 
Apple IlGS, a long word is 32 bits (4 bytes) long. 

Lo-Res: The lowest resolution graphics display 
mode on the Apple Il family of computers, 
consisting of an array of blocks 48 high by 40 wide 
with 16 coJors. 

low order: The least significant part of a 
numerical quantity. To normal representation, the 
low-order btt of a binary number js in the 
rightmost position~ likewise, the low-order byte of 
a binary wor<I or longword quantity consists of 
the rightmost 8 bits. 

megabit: A u nil of measurement equal to 
1,048,576 (216) bits, or 102.4 .kilobJcs. Megabits are 
commonly used in specifying the capacity of 
memory integrated circuits . Not to be con.fused 
with megabyte. 

megabyte: A unit of measurement equal to 
1,048,576 (216) bytes, or 1024 kilobytes. 
Megabytes are commonly used in specifying the 
capadl.y of memory or disk storage systems. 

megahertz (MHz): A unit of measurement of 
frequency, equal to 1,000,000 hertz. Compare 
kilohertz. 

Mega u~ A custom Large-scale integrated drcuit 
thal .incorporate.s mast of I.he timing and control 
cirruirs of lhe standard Apple II. It addresses l ZBK 
of RAM organized as 64K main and auxiliary ban.ks 
and provides the standard Apple U video display 
modes, both cexc (40-column and 80-colurnn) and 
graphics CLo·Re.s, Hi~Res, and Double Hi-Res). 

memory block! See block (2). 



Memo,ry Maoageri A program in lhe Apple IlGS 
Toolbox that manages memory use. The Memory 
Manager keeps track of how much memory is 
available and allocates memory bloc.ks to hold 
program segments or data. 

m mory-mapped 1/0: The method used for VO 
operations in Apple ll computers. Certain 
memory locations are attached ro I/O devices, 
and 1/0 operations are Just memory load and 
store ins ructions . 

m fla~ One of three flag bits in lhe 65C816 
processor that programs use to control the 
processor's operating modes. In natlve mode, 
the setting of the m flag determines whether I.he 
acrnmulator is 8 or 16 bits wide. See also e flag 
andx flag. 

microprocessor~ A central processing unit that is 
contained in a single integrated circuit. The 
Apple IIGS uses a 65C816 microprocessor. 

mini-assembler: A part of the Apple rIGS 
Mon1tor program lhat allows I.he user to create 
small assembly-language test routines. See also 
assembler. 

Monitor p.rogram: A program built into the 
firmware of Apple Il computers, used for directly 
inspecting or changing the contents of main 
memory and for operating lhe computer at the 
machine-language level. 

MOSz Acronym for metal oxide semtconductor, 
one of several melhods of making integrated 
circuilS. 

native mode: The 16-bit configuration of the 
6SC816 microproce.ssor. 

next·dlaO.geable location: The memory 
local.ion that is next to have it:; value changed. 

NTSC: (1) Abbreviation for NattonfJI Teleutston 
Standards Committee, which defined the standard 
format used for transmitd.ng broadcast video 
signals in the United Stares. (2) The standard video 
format defined by lhe NTSC; atso called 
composite because it combines all video 
information, inducling color, into a single signal. 

object file: The output from an assembler or a 
compiler, and die input to a linker. It contains 
machine-language intructions. Also called object 
program or object code. Compare sou.roe flle. 

op code: See opera.don code. 

d: A modifier key on some Apple II keyboards. 
On lhe AppJe HGS keyboard, lhe equivalent key is 
called simply the Apple key; it is marked with 
both an Apple icon and a spinner, the icon used 
on some Macintosh keyboards. 

operand: An item on which an operalor(such as+ 
or AND) acts. 

operation code: The part of a machine-language 
instruction that specifies the operation to be 
performed. Often caJled op code. 

page: (1) A portion of memory 256 bytes long and 
beginning al an address that Is an even multiple of 
256. Memory blocks whose starting addresses are 
an even multiple of 256 are said lo be page 
altgtwd.. (2) (usually capitalized) An area of main 
memory containing tc.xt or graphic information 
bejng displayed on the screen. 

palette: The sel of colors from which the user can 
choo ea color to apply to a pixel on lhc screen . 

parameter: A value passed lO or from a function 
or other routine. 

parameter block: A sec or contiguous memory 
locations set up by a calling program to pass 
parameter lo and receive result<> from an 
ope~ting-syscern function that the program calls. 
Every caU LO SmartPort must include a pointer to a 
properly construeted parameter block. 

Glossary 317 



parity bit: A bjt lha.t is some times Lransmil.ted 
alon.g wilh the other bits that define a eri~J 
cha.1'3.cter. n is u d to check the accuracy of the 
lransmission of the character. Even parity means 
that lhe total number of 1 bits tra.nsrn.itted, 
including the parity bit itself, is even, Oddparity 
means lb.at the toEal number is odd. The parity bit 
is generated individually for each character and 
checked, a character al a time, at rhe receiving 
end . 

peripheral device: See device. 

pixel: hort for ptcture eJemen.t. The smallest dot 
lhat can be drawn on the screen Also a Jo-cal.ion in 
video memory that corresponds to a point on the 
graphks screen when the viewing window includes 
that locatio n. ln the Macintosh d isplay, each pixel 
can be either black or white, so It can be 
represenled by a bit; thus, the display is said to be 
a bit map. In the Super Hl-Res display on the 
Appte IlGS, each pixel is represented by either 2 or 
4 bits; the display is not a bit map, but rather a 
pixel map. 

pixel map: A set of values that .represents the 
positions and tal.eS of the set of plx:ds making up 
an image. 

ProD O : Acronym for Professional Disk 
operating System, a family of disk operating 
syslems developed for the Apple II family of 
computer . PmDOS includes both ProDOS 8 and 
ProDOS 16. 

ProDOS & A disk operating system de\feloped for 
slandard Appie lI computers. lt runs on 6502· 
series microprocessors and on lhe Apple IIGS 
when the 65C816 processor is io 6502 emulation 
mode. 

ProDOS 1·6: A disk operating ysLem developed 
for 65C8I6 natl e· mode operation on the 
Apple TJGS. It is functionally similar to ProDOS 8, 
but more powerful. 

318 Glossa ry 

p rompt: A message on lhe screen tha t a program 
provides when It needs a .response from t.he user. A 
prompt is usually in the form of a symbol, a dialog 
box, or a menu of choices . 

Quagmire .regls1en On c.he Apple llGS, lhe 
name given lo the 8 bits comprising the spccd­
contro1 bit and the hadowing b its. From the 
Monitor program, me user can read from or wri[e 
to the Quagmi..re register to access those bits, ven 
though they arc actually in separate registers. 

RAM: See random-acce m emory. 

:RAM dis.k:: A portion of RAM chal appears lo the 
operating system to be a disk volume. Files in a 
RAM disk can be accessed much faster than die 
same files on a disk See aJso ROM disk. 

random-acces memory (RAM) : Memory in 
which information can be rererred lo in an 
arbitrary or random order. RAM usually means 
the part of m mory available for pmgrams from a 
disk; the programs and other daca are lost when 
lhe computer is turned off. (.icchnica.lly, lhc read­
only memory is atso ;-andom access, and whaL's 
called RAM should correct.ly be termed read-umte 
memory.) Compare r ead-only memory. 

RDKEY: The firmware routine lh-at a program uses 
to read a single keystroke from me keyboard 

read-only memory (ROM): Memory whose 
con.tents can be read, but not changed; used for 
storing firmware. Information is placed into 
read-only memory once, during manufacture; jt 
Lhen remains the.re permanently, even when the 
compuler's power is turned ofT. Compare 
random.access memory. 

recharge routine: The function that suppJies 
data. co che output device when background 
prlntlng is taking place. 



RGB: Abbreviation for red-green-blue. A method 
or displ.ayi.ng color video b}'' transmitting lhe three 
primary colors as three separate signals. There are 
two ways of u&ng RGB wirh computers; rn RGB, 
whidl allows the color signals lo take on only a few 
discrete valuesi and analog RGB, which allows I.he 
color .signals to take on any values between lhe.ir 
upper and lower limits for a wide range of colors. 

ROM: See readl--0nly memory. 

ROM disk; A feature of some operating systems 
that permits lhc use of ROM as a disk volume_ 
Often used for making applications permanently 
resident. See also RAM disk. 

RS·23:2: A common standard for serial dala. 
commurucation imcrfaC"CS. 

RS-422: A slandard for serial data communication 
in~rfaces, differenl from the RS-232. standard in 
its clcc1.rical c.haract.eristics and in ii.s use of 
differencfaJ pairs for data signals. The serial ports 
on me Apple IlGS use RS-422 device.<i modified so 
as to be compatible with RS-232 devices. 

SCC: Abbreviation for Serial Communications 
Controller, a type of communication re used in 
the Apple IIGS. The SCC can run synchronous dati. 
IIar'lSmission proL.ocol and thus transmit data at 
faster rates than the ACIA. 

screen holes: Locations in the text display buffer 
(text Page 1) used for temporary storage cl.1.hcr by 
l/O routines running in peripheral-ca.rd ROM or 
by f1Imware routine,'> addressed as if they were in 
card ROM. Text Page 1 occupies memory from 
50400 to $07PF; I.he screen holes are locations in 
that area that a.re neither displayed nor modified 
by 1he display firmware. 

s~ctor: See track. 

shadowing: 'fhe process whereby any changes 
made co one pan of the Apple JIGS memory <1re 
automatically and simullaneously copied inro 
anocher parL \Vhen hadowing is on, Information 
written lD bank SOO or $01 is automatically copied 
into equivalem locations in bank $EO or $El. 
Llkewi~e. any changes to bank EO o:r $El are 
immediately 11eflec1.ed in bank SOO or SOL 

64K Apple ll: Any standard Apple H that has at 
leasl 64K of RAM. Tiils includes tl1e Apple Jlc, the 
Apple Ile, a.nd an Apple n or Apple IT Plus wim 
48K of RAM and the language ca.rd insi:alled. 

6S02: The microprocessor used in the Apple II, 
c.he Apple n Plus, and early models of the 
Apple nc. The 6502 is a MOS dcvict: wilh S-bir ruua 
registers and 16-bit address registers. 

65CO:Z:: A CMOS version of the 6502, Lhi'l is the 
microprocessor u:sed in 1.he Apple Ile and the 
enhanced Apple Ue. 

6:SC816: The microprocessor used io the 
Apple IlGS. TI1c 65C816 is CMO devire wilh 16-
bit data registers and 24-bit address registers. 

SmartPon: A set of firmware routines supporc:ing 
multiple block devioes connected to the 
Apple lIGS dic;k: pon. See also extended 
S:martPort call and standard SmartPort call. 

soft &.'Witch: A location in memory that produces 
a pedfic effect whenever its coments are read or 
wrincn. 

souroe file: An ASCH file consisting of 
instructions written in a particular language, such 
as Pascal or assembly language .. An assembler or a 
compiler converts a source me into an object file. 

SSC: Abbrevialion for Super Serial Card, ai 

peripheral card that enables an Appk: ll to 
communicale with serial devices. 

Glossary 319 



staclc: A list in which entries are added (pu.c;hed) 
and removed (pulled) ar one end only (the lop of 
the stack), causing !:hem lo be removed in lasl-in, 
first-out (UFO) order. The stack usually refers to 
che particular stack pointed to hy !he 6SC8J 6's 
stack regJste:r. 

stack register; A hardware register 1 !he 65C816 
proc.e.ssor thal c:onLain.s lhe address of the top of 
Lhe processor's stack. 

standard pple II: Any computer in I.he pple n 
family except the Apple UGS. This includes the 
Apple ll, I.he Apple II Plus, the Apple lie, and the 
Apple He. 

struldar-d S·martPort call: A SmartPort caU that 
allows data transfer to or from anywhere In 
standard Applen memory, or the lowesL 64K of 
Apple nos memory. Compare extended 
Sma:rtPort call 

start up: To get Lhe syslem running. See boot. 

Super Hi-Res: A high-resolution graphics disp1ay 
mode on the Apple tlGS, co11sisting of an array or 
points 320 wide by 200 high wilh 16 colors or 640 
wide by 200 high with 16 colors (with restrict.ions) . 

synthesizer. A hardware d vice <'apable of 
creating sound digitally a11d co11verting it inlo an 
analog waveform that can be heard. 

system disk; disk thal contains the operaling 
system and other yslem software needed to run 
applicalions. 

system software: The componenl.'l of a 
computer system that support applic nion 
programs by managing system resou recs such 3$ 

memory and I/0 devices. 

terminal mode: The mode of operation in which 
lhe Apple rTGS acts Uke an imelligcnt terminal. 

text window: 'lhe portion of the Apple TI scree11 
that is reserved for text At startup, the firmware 
initializes the entire display 10 text However, 
applications c:an restrict rexl IO any rectangular 
portion or Lhe display. 

320 G lossory 

tool: See tool t. 

toolbox: A collection of built-in routines on the 
Apple n GS that program can caU to perform 
many commonly needed run<'tions. Function 
wilhin the lOolbox ar gtrJUJ d into tool 

tool set: gmu p of relatl'd rot1tfn (u u lly m 
firmw re) lhal perform necessary function. or 
pmvi.d,. progr::i.mminl't conven ience They arc 
available to applicacions arid system software 111e 
Memory Managert the System Loader, and 
Quic.k.Dra.w n are tool sel5. 

track: One of a ~ries of concentric circles that are 
magnetically drawn on the recording surface of a 
disk when the disk ls formalted. 'fracks are fun.her 
cliv1ded into sectors. 

v tor: A loc:auon containing a vaJue lha[, when 
ddcd to a b: sc address value, provides the 

address that is lhe enLry point of specific kmd of 
routine . 

word: A group or birs that is trea~d as a unit For 
the Apple llGS, a word is 16 bits (2 by1 s) long 

x ~One of three flag bfl:S in the 65C816 
processor thac programs use to control the 
processor's operating modes. In natlrve mode, 
1he selling of the x flag determines whether the 
mdcx registers am 8 or 16 bILc; wide. See also e flag 
and m flag. 

XON: A special character (value $13) used for 
controlling the cransfer of data between two pieces 
of equipment See aL o handshal.dng :and XOFF. 

XOFF: A . pedal character (va1ue $ J 1) used for 
COlllrollin~ the l:ransfcr or data between two pLeces 
of equipment . When one piece of equipmcm 
receives an XOFF character from Lhe other, il 
swps transmitting characters until it receives an 
XON. See also handshaking and XON. 

zero page: The first page (2.56 bytes) of memory 
in a .slandard Applen computer (or in lhe 
App]e IIGS when running a st.andard Apple U 
program). Because the high-order byte of any 
address m this part of memory is zero, only a 
'lingle byte 1s needed to specify a zero-page 
ddres.s Compare direct pag • 



A 
ABORT 179 
Abort command 188 

ABORTMGRV 2"65 

accumulator 35 
accum1:1lator mod 62 
ADB mJcroconuoller. See 

Apple DeskTop Bus 
microcon.1.rol ler 

addition 32-bil 
ADVANCE 240 

AMPERV 259 
apo.suophe ( 1 ) 40, 64 
Apple DeskTop Bus conn ·ctor 8 
Apple DeskTop Bus in put devices 

10 
App[e DeskTop Bus mlcrocoruroller 

6, 183, 18'5-196 

commands H!B-1$15 
status byte 196 

Apple 3.5 disk drive 117, 133, 135 
Smart.Port calls 138-141 

APPLEU 237 
Apple? Uc II 
Apple Ue Plus 222 
Apple llGS 

boot.Isam ~uence 17 
detached keyboard 10 
&>-column display Tl 
fl rmware 2-6 
'IO·column display 71 
inlcrrupts 16 
l/O expansion slots 11 

1/0 pons 11 
memory addresses 21 

memory pac • 9 
micmproce.ssor g..9 

Monitor. See system Monitor 

program opera.Lian levels 4 
r.ound ystcm 10 

stan.up l l2 

Super Hi-Res display 9-10 
t cl:mical manuals 216-221 
Toolbox 2, 218, 310 

Apple UGS Disk H 
firmware 5 
I/0 port characteristic:; 111 

Sma1lPort interactions. 158 

support 109-112 
Applcsoft BASIC 2, 43, 74, 87, 

112, 178 
App1e Super Serial Cud (SSC) 82 

AppleTalk 3, 8, 15, 17, 82, 98, 

173 
interrupts 180 

A register 18, 35 
changing 6o 
s•,rstem interrupt handler 181 

arrow keys 72 
ASCH 25. 26, 29, 51, 67, 86, 

123, 1S2 
filters 31 
nip 30,64 
in put mode 30 
llteral 30, 64 

:lis:-~mbly language 

mouse routines 202, 211-213 
Pa.sc<1I protocol 93.94 

at sign (@) 226 
AUXMOVE 260 

B 

Ilack Arrow key 75 
backgrou nd printing 97-98 
backi;I~ h (\) 75 
Backspace key 70, 75 
BADBLOCK 156 
BADCMD 1'56 
BADCTL 156 
BADCTLPARM 156 

BADPCNT l56 
BADUNIT 156 

bank SOO 12, 15 
firmware entry points 224-257 
page Fx vectors 262-263 
page 3 routines 26o-261 
page 3 vectors 259 
running a program in 9, 65 

bank/address 21, 22, 26, 29, 32, 
64 

bank $EO 308-310 
b nk $El 308-310 

VC.."Ctors 264· 265 
BASGALC 239 
BASIC 48, 51, 74, 75, 82, 83, 86, 

87, 90 , 112 
command 43 
interface 93 
mouse programs 206-208 

mouse routines 203 
BASICIN' 70-73 
BASrCINPLIT 2W 
BASICOlIT 70, 73, 76-78, 8-0 
BASICOtll"PlIT 209 
Battery RA..'vt 299, 306 
baud r.tle 88 
BO command 96, 97, 183 
BELL 253 
llElL1 239 
BEUl.2 239 
BELL2 240 
BELi.VECTOR 270 

BTNITENTRY 209 
bool-fall ure SCTcl!n 17 

bool/scan sequence 17 
BREAK 233 
Break (BRIC) 36, 183 

BREAKVECfOR 270 
B resister 18, 35 

BRK 179 

321 



!lRKV 259 
BS 211 
BulTeriog En;iblc 83 
BUSERR 156 
bus resideot.s 157 
buuon l status 204-205 

,.. 
Call stat.emenl 20 
caret (~) 53, 55 
carria!;c return 59, 75, 83 
CW1PMOUSE 209, 213 
dear Mo<les command 189 
CLEAR.MOUSE 209, 212 
CLEOLZ 79 
dock 300 
dock chip inlCrrupts 180 
Cl05C cal l 5, 131-132 
CLREOL 79, 243 
CLREOLZ 243 
CLREOP 79, 242 
Cl.RSCR 791 22-6 
CLRTOP 79, 227 
cold start 65, 112, 178, 234 
colon (:) 28, 29, 40, 51, 52, 61 
color graphics 10 
command characters 87 

communjcallons mode 87 
prinlt!r mode 87 
term in:i.I mode 91 ·92 

comm.and packets, Srmrt?ort 159, 
166-167 

command st.rings ff7 
communlations modc 83 

command character 87 
commands 9HJ2 

Continue BASlC comm~nd 43 
Conu-ol.A 61 
Control·[ 77 
Con1.rol-\ 77 
Control-] 77 
Comrol-_ n 
C..onlrnl.A 77 
Control-A ff7 
Control-ll 43, 65 
Control-C 4 3, 65 
Control call 129-130 

322 Index 

control characters 73, 76-78 
suppressing 90 

Control-E 60, 77 
Conlrol-F n 
Control-G 77 
Control-H 77 
Control-I 87 
COntrol-J T1 
t.Ol •LIVl-t< i:J't 1 rt 

Control -L 77 
Contml-M 77 
COnLrol-N 77 
Comrol-0 77 
Control-P 40, 64 
ConLrol Panel 3, 40, 7S, 82, 83, 

86, 90, 93, 97, 110, ] 12, 117, 
130, 299-307 

Conlrol·Q 77 
Comrol-R 66, 77 
Control-Reset 43, 46, 112 
Contr-ol-S 77 
Control-T 61 
Control-U 77 
Control-V 77 
Control-W 77, 87 
Control-X 58, 75, 77, 217 
Control-Y 47, 65, 77 
COP 36, 179 
COPMGRV 265 
copy-protection engineer (CPE) 
tools 144-145 
COPYRIGHT 209 
col.IT 70, 71, 75, 76, 79, 219 
COUT'l 64, 70, 74, 76-80, 249 
cour :;UbrOUlinC 39 
COlTl"Z 249 
CPE (copy-prcxeaJon engineer) 

tools 114-115 
CR 242 
C register 18, 35 
CROITT 79, 248 
CROUT1 247 
C3COITT1 64, 70, 76-78 
cr:ru. YVECroR 271 
CUPDATE 269 
cursor 71 

changing 41, 64 
conuol 72 
keys 10 

0 
data bank register 13, 16, 35, 92 

changing 61 
system interrupt handler 181 

data buffer pointer 126-127 
dalll byte encoding table 164 
data C2fricr dctc.ct (DCD) 84 
data form.at B8 
data set ready 1.JJ~NJ M·lf;1 1 ':h 
d:ua terminal ready (DTIQ 84.g5, 

95 
d.ite 

changiog 64 
displaying 40, 63 

DBR register 11, 13, 35 
DCB (device control block) 123, 

130 
DCD (data carrier detect) S·\ 
debuggin8 48 
DECBUSYFLG 270 
decimal numbers, convening 41, 

65 
Delete key 75 
delta 199 
Desk Manager 180 
device control block (DCB) 123, 

HO 
device ~pping 117 • 119 
DEVSPEC 156 
DIAGMOUS£ 200 
diagnC>M!c routines 3 
DIG 256 
Digita l Osciltaior Oiip (DOC) 10 
direct page 12, 15 
direct-page registe.r 13 
direct reglster, system interrupt 

handler 181 
Disable Device SHQ command 195 
disassembler 55-56 

opcodes 293-298 
Disk n firrnv.l'lre 5 
DlSKSW 156 
DlSPATCHl 264 
DJSPA 'rCH2 261 
dispatch address 115 
display 302 
division, 32-bit 42 
DOC (Dfgita.I O.scillator Chip) l 0 
dol!o>r 5ign ($) 54 



DOS 70, 110 
DOS 3 .3 43 
Download ] 43 
D .register 11, 35 

changing 6o 
DSl1 (data set ready) B'Hi5, 95 
DTR (d:lu tcrmin;il ready) 81-85, 

95 
DuoDisk llO 

E 
£ABORT 177, 263 
EBRKIRQ 263 
echo 91 
EGOP l 77, 263 
l:.D command 91 
EE command 91 
c flag 37 
Eject 13B, 142 
emulaitlon mode 9, 14, 37-38, 56, 

120 
accumulator 18 
chang tng 62 
code 15 
t.ack 13 

EMULSTACK 13 
Enable Device SRQ command 19 
enable line formauing 89 
ENMl 263 
Ensoniq chip interrupts 180 
environmeol 8, 36 

firmware routines 11- 16 
resening 66 
restorlng 14 
Sf5lcm interrupt handler 181 

equal sign ( =) 37 
ERESET 263 
error codes, SmanPort 156 
error status register 95 
&c A 73 
Esc @ 73 
escape codes 72, 73 
Escape key 72 
escape mode 71, 72 
Esc ll 73 
Esc C 73 
Esc-Conlrol·D 73 
Esc-Conuol-E 73 

Esc-Control-Q 7 3 
r~ o 73 
E.c;c E 73 
Esc 8 73 
Esc F 73 
l.:.sc 4 73 
~I 73 
Esc J 73 
Esc K 73 
Esc M 73 
Event Manager 7S, 183 
Examine i.nstruclion 37 
exclamation point ( ! ) 52 
Execute 142 

F 

FD comm nd 90 
rDlQ 245 
Pill Memory command 59 
filter m.aslc, changing 63 
firmware. See also specific 

t)pe 
entry points 224-257 
JO bytes 222-223 
1/0 routines 11-16, 79 

Jfag· modlficatlon commands 38 
flags 8, l2, 14, 16, 35-38 

examining i.nd changing 36-38 
rc5loring 66 

nashlng text 78 
flip ASCII 3Q, 64 
Flush command 6, ISO 
Flush Device Buffer command 195 
FlushlnQucuc 102 
Flush Keyboard Buffer command 

188 
FlwhOutQueue 102 
Fomuu 5, 128, 139, 147 
free space 308, 3 IO 

G 

GBASCALC 227 
GetDTR 105 
GET816J.EN 230 
GetlnBuffer 101 
GetJnllnfo 96, t05, 184 
GETLN 21, 71, 74-75, 79, 216 

GETLNO 247 
GETLNl 247 
GETLNZ 246 
GetModeBu.s 95, 100 
GETNUM 2S6 
GetOurnuffer 97, 98, 101 
GctPonSta\ ]04 
GelSCC 104 
Get Version Nuft1bcr comm;11nd 

192 
Gl.lJ rhip 183, 186, 199 
GO 252 
Go command 36, 49 
graphics display modes 10 
graphics tablets 10 

H 

handshaking fM-BS 
protocol 89 

llEADR 244 
hexadecimal 21, 25, 26, 32, 53, 

115, 116 
math 42 
numbers, convcr1ing 41, 65 

HUNE 79, 226 
I IOME 79, 242 
HOMEMOU E 209, 213 
hook table 145 

IDROUTIJ\"E 250 
immediate mode 56-57 
INCBUSYFl.G 270 
index mode, changing 62 
l'.:'llT 236 
Jnil call 130 
INITMOUSE 203, 209 
!NPORT 251 
lnp\lt buffer 46, 75, 91 
input links, redirecting 64 
input routines 71-75 
InQSLatus 96, 103 
INSDSl .2 229 
INSD52 '.C!29 
rNSTDSP 230 
Integer BASJC 13, 71 

Index 323 



1ntegr.ued Woz M:tchine (IWM) chip 
5, 110- Ul 

intellisent devices S 
tmerru pt 1 5, 16, 95 , 96~97, 17 J 

prlorltles 177·180 
processing 181·182 
VOClOts 177 

Interrupt handler 16 
built-Jn 172-174 
firmware 6 , 169-184 

Interrupt Request (IRQ) I ine 171 
I ·rMGRV 264 
Inverse command 39, 63 
Jnverse text 78 
inv rse video 39, 71 
IOERROR 156 
1/0 links 70 
1/0 port s 114 
IORTS 254 
IRQ 180 
IRQ .A !YT ALK 266 
IRQ.DSKACC 268 
IRQ.EJt.T 269 
JRQ.FLUSH 269 
IRQ.KBD 268 
IRQ.MlCRO 269 
IRQ.MOUSP. 267 
IRQ.lSEC 269 
IRQ.OTHER 269 
IRQ.QTR 268 
IRQ.RE.SPONSE 268 
IRQ.SCAN 267 
mQ.SERl l\L 266 
IRQ.SOUND 267 
IRQ.SRQ 268 
IRQ.VBL. 267 
IRQLOC 259 
I tlQV~CI' 177 
!WM (Tntegrated Woz M.achlne) chip 

5, 110-111 

JMP m rucuon 47, 50, 65, <56, 
l'IS 

Joystick 10 
JSL. See jump to ubri:IUllne long 
JSR. See jump t0 !lubrouUnc 
jump lo subroutine QSR) 12, 14, 

47, 49, 49, so, 114 

324 Index 

jump to subroutine long (JSI.) 12, 
14 , 50, 9B, 152 

K 
KDDWA1T 238 
keyboard rn, 40, 13, n, n 

lnpul buffering 75 
interrupts 180 
language codes 190 

Keyboard command O 
KEYi .~ 70, 71-72, 79, 245 
K reglst·er 35 

L 
language card 16 

area 310 
b<mk 35, 56, 63 

language options 305 
l~t-ope.n.ed location 25, 26 
less-than character(<) 31, 34 
lF 242 
.line feed 83 

automaclc 90 
masking 91 

line length 89 
~LIST" 250 
Listen 6 
List Instruction 53, 55. 66 
!Jtera.l ASCII 30, 64 
local-area network. See 

A plcT lk 

M 
machine-language programs 8-SO 
machine regl.sters 12 
machine srate 36 

changing 61 
mail box registers 186 
mark table 144-145 
M sking Enable 83 
Mega H chip 308 
memory 9 

changing 28-31, 64 
compari.og dala. 33 
moving da~ 31-32 
5e-ll rch tng ror bytes 34 

memory dump 27 
memory locations 

changing 28-.30 
disp[aying SS 
e,;.amining 26-27 
text wlndow 80 

Memory Manager 9, 15, 308, 310 
memory r11.n3e 

display 27 
lllllng 34 
tcrminatfrig 58 

rn nag 37 
m icroproceSS/Or. See SJNK1fic. 

type 
mlni-as.sembler SI-55, 74 

instructian formats 54-55 
opccx:Je.s 293~298 

mode.m common lea.lions 84 
modem pon 301 
MO 255 
Mon itor. See system Moniloir 
Monitor command 49 
Mon itor firmware 4 
MONZ 255 
MONZ2 255 
MONZ4 256 
mouse 

j:nterrupts 180, 183 
p::>.'iilion clamp:; 201 
position diJ~ 199·20 l 

mouse firmware 6, 197-213 
calls 2-09 
using 202-205 

mouse programs, BASlC 206-208 
MOVE 250 
Move command 31-32, 45, 59 
M register 36 
MSGPOJNTER 275 
MSLOT 266 
multtplkalion, 32-blt 42 
muslc 10 

N 
N BORT 177, 262 
native mode 9, 14, 56 

accumulator 18 
51.ack: pointer 13, 14, 15 

NlJREAK 177 , 262 
NCOP 177, 262 



next-changeable localloa 25, 26 
NIRQ 177, 262 
NMI 177, 178, 259 
NNMJ 177, 2l52 
NODRlVE 156 
NOINT 156 
NONPATAL 156 
Normal command 39, 4.4, 63 
normal video 39 
NOWRITE 156 
numeric keypad 10 
NXTAl 244 
NXTA4 244 
J".'XTCHAR 25 7 
NXTCOL 227 

0 
OPFLl E 156 
OLDBRK 233 
OLDIRQ 233 
OLDRST 255 
opcocles 56-57, 293<298 
Open call 5, 131 
options 304-305 
OPTMOUSE 209 
Ol.ITPORT 252 
output Jinks, redirecting 64 
out::pul routines 76-78 
OutQStatus 96, 103 

p 
I 

paleues 10 
parity 89 
Pascal 48, 82, 86, 97, 110, 210 
Pase1l LI 93 
Pattern Search command 34, 59 
PBR regisler 11, 35 
PCADJ 232 
period (.) 26, Z7 

pieture element. See pixel 
P1nil 209, 210 
plxel 10 
PLOT 79, 225 
PLOTl 225 
plus 5.ign (+) 71, 72 
Pol l I)evice command 195 
POSMOUSE 209, 211, 213 
PRA1 248 

PRBL2 79, 231 
PRBLNK 231 
PRDYTE 791 24 6 
PRead 209, 210 
PREAD 235 
PREAD4 235 
P register 3S 
PRERR 253 
Pl:UfllX 79, 248 
Printer command 40 
printer mode 83 

command character 87 
commands 88-90 

prioler pott 300 
PRNTAX 79, 230 
PRNTX 231 
PRNTYX 230 
processor 51.atus 

chllnging 61 
reg Lst(!I' 37 
system inte rrupt handler 181 

ProDOS 43, 70, 110, 114, 115, 
130 

ProDOS 8 11 i', 220 
ProDOS 16 117, 220 
program bank ni:gister 17, 35 

system interrupt bandier 181 
prognm counter 5 l 
program ope~tioa levels 4 
program reg;lster, changing 61 
prompt 74 
PROMPT 2:-17 
prompt character 

() 20, 26, 74 
en 74 
(r) 52, 74 
(:>) 74 
('?) 74 

PROI6M11 274 
pseudoregistcrs 8, 16 
PStatus 209, 210 

PWREDUP' 259 
PWrlce 2.09, 210 
PWRUP 234 

Q 
Q register 36 
Quagmire reclster 16, 36 
Quagmire state, changing 62 

quarter-second timer Interrupts 
lBO 

question mark (?) 74 
quit 306 
Quit Monitor comma.nd 43, 65 
quotation mark (") 34, 52 

R 
RAM disk 17, 110, 114, 117, 231, 

303 
random-number gencr.itor 72 
R comm:and 90 
RdAddr 146 
RDCHAR 246 
RDKEY 70, 71, 79, 244 
RDKEYl 245 
READ 253 
Read Address Field 139 
Read Available Character Sets 

command 193 
Read Available Keyboard layouts 

comound 193 
ReadBlock call 5, 126 
Read call 132-133 
Read and Oear Error llyte 

command J.92 
Read Connguratlon Byles command 

192 
ReadDau 146 
Read Mlcrocontrnller Memory 

command 191 
Read Modes Byte command 191 
READMOUSE HB, 203, 209, 212 
read-only memory 20 
Receive Bytes command 194 
Etecha:rge routine 97, 98 
REGDSP 235 
register addresscs, mouse 200 
regiscer-dJ.splay comrmmd 22 
registe:r-modificat[on commands 38 

registers 8, 12-18, 35-3.S 
examin Ing 6o 
cx11min ing and changing 36-38 
restoring 66 

RESERVED 156 
RESET 177, 178, 234 
Reset ADB command 194 
Resetliook 140 

Index 325 



Reset Keyboard M icrocomroller 
command 18B 

Rescll\fark 111 
Reset L.00 System command 193 
ltES1'0RE 254 
Re.sume command 50, 179 
return rrom ~ubrouline (R'rS) 49, 

65 
retum from subroutine Ieng (RTI..) 

l4 
Retype key 75 
ROM {read-only memory) 20 
ROM disk 17, 110, 114, 117, 234 

driver 152-155 
passing parame1ers. 152-153 
noM for 151-155 

RTlll. 235 
RTI. (rc;!LUm from subrouUne long> 

14 
HTS (return from subroutine) 49, 

65 

s 
SAVE 2S'i 
scan~li:ne lnterrupts 180 
Scrap Man;igcr 180 
screen holes 203 
SCRN 79, 228 
SCROLL 243 
SCSJ (Small Computer Sy.slc:m 

Interface) 11 S 
Seek 139, 147 
Send ADB Keycode command 193 
Send command 97 
SendQueue 97, 9B, 103 
SendRe:sel 6 
serial-pen nrmware 5, 81-108 

background pru:lling 97 -98 
buffering 95-96 
cornp.atibaily 82 
error handJ.ing 95 
extended interface 99 
handshaking 84-85 
interrupt notification 96-97 
operaling commands 86-92 
operating modes 83 
programmtog 92-94 

326 Index 

scria.1-port interrupts 180, 183-184 
SERVE.MOUSE 202, 209, 212 
Sel.Addres.s 143 
SEITCOL 79, 225, 226, 228 
Set Configuration Bytes command 

190 
SelDTR 105 
SETGR 236 
Se1Ilook 138-139 
Sellnlluffer 95, 102 
Sellnterle:ivc Ht 
Sellnllnfo 96, lo6, 181 
SETINV 25I 
SEITKBD 251 
Sel.Mark 1'10-141 
SeL\otode lllt.s 95, 97, ] 00..10 I 
Sel Modes command 189 
SETMOUSE 209, 211 
SETNORM 251 
Se10utBuffer 95, 97, 102 
SETPWRC 2;,7 
SelSCC 105 
Sets ides 141 
SIITTXT 236 
SETVl:ILCNTS 20') 
SETVID 252 
SETWND 236 
SE1WND2 237 
shadowing 308. 310 
Sludow register 16 
6805 AppleMouse microprocessor 

card 213 
6502 microprocessor S 
6SCBI6 assembly language 51 
65CSI6 microprocessor 8-9 

Apple Desktop Du5 
m icrocontrollcr 186 

emulation mode M 
e.xecmlon speeds 9 
Jndexed inst.ructions 17 
tnodes 9 

slash (/) 22, 40 
SLOOP Z34 
:slots 304 
Small Computer System Interface 

(SCSI) ns 

SmanP011. 110 
assignment of unil numbers 

117-119, 157-158 
call parameters 116 
control flow 159-165 
Di$k It inier:aclion.s 158 
dispatch address 115 
error codes 156 
extended comma.ndls 137 
Ls.suing a caJI IZQ-.121 
localing 114-115 
read protocol 161 
SLitndard commands 136 
wrllc prot.ccol 162 

SmartPort bu.11 133, 157-165 
p.ac:kel comcats 164 
packcl format 163 

SmanPon calls 121-137 
device-specific 138 
speciflc to Apple 3.5 disk drive 

138-141 
specific to U niDisk 3. 5 14 2-143 

SmartPort flrmwar~ 5, 17, 113-165 
SOFfEV 259 
~ft swilchcs 2n-290 
.sound 303 
Speed register 16 
S register 11, 35 
SUQ 180 
SSC (Apple Su per Serial Card) 82 
Mack 15 
stack pointer 13-15, 35 

changing 61 
STARTfIME 209 
Status calls 121-125 
stalus code error 122 
r.ilal.us reg i.ster 56 
Slep cummand 50, 66 
STEPVECTOR 271 
STORADV 210 
Store command ~4 
subtraction, 32-bll 42 
Super I-Ii-Res display 8, 9·10 
~ymbol table 291, 292 
Sync command 191 
SYSDM GRV 265 
5y$lcm interrupts 175-180 



sysr.cm Monitor 

T 

command syoLax 21 
command types 21·24 
creating commands 47 
80-column mode 25-26 
filling memory 45 
firmware 4, 19·67 
40-colurnn mode 25 
invoking 20 
memory commands 25-34 
mtscellam:ous commands 39-43 
multiple comnunds 44 
repealing commands 46 

tabbing 92 
TA.BY 237 
Talk 6 
tcrmim•l mode 83 

command character 91-92 
TEXT2COPY 232 
text dlspl:ay, changing 63 
text window 80 
lime 

ch;iag,ing 64 
displaying 40, 63 

Tl MEDAT A 209 
TOBRA.MSETUP 273 
1'0CTR1...PANEL 273 
loolbox roullnes 43 
t.ool error number 67 
Tool locator 43, 55, 67 
TOPlUNTMSGS 273 
TOPRlNTMSG 16 274 
TOREADBR 272 
TOREADTIME Z73 
TOSUB 247 
TOTEXTPG2DA 274 
TOWRJTEBR 272 
TOWRITETIME 272 
TLoU.~ 1.U'LIU.lliollllJ ::IU, lj6 

TRACEVECTOR 27\ 
Transmll num Bytes command 

194 
Transrntt Two B)'les command 195 

u 
urn SPATCH l 264 
UD I SP ATCII2 264 
underscore ( ) 41, 67, 83 
UniDiskStat I43 
UnIDl5k 3.'.S 110, 117, 133, 135 

internal functions 144-145 
lntemal routines 146-149 
memory al location 1 50-151 
SmanPort calls 142-143 

UP 241 
U5cr command 47 
user vector 65 
USRADR 259 

v 
vectors 70, 149, 2SS-275 
Verify 33, 45, 59, 140, 148 
VERSlON 238 
venical blanking signal 180, 183 
video firmware 5. 69-80 
vmour 240 
VIDWAIT 238 
VUNE 79, 226 
VTAB 241 
VTABZ 79, 241 

w 
WAIT 243 
wnm start 65 , 112, 178 
windows 219 
WRITE 253 
WrlteBlock c:aU S, 127 
Wrile c:an l34-B5 
WriteData 147 
Wrtte Data fl'Eeld 139 
Write 1icrocontrollcr Memory 

command 191 
Write Track 139-140 
Write I rlt 118 

x 
XBA 18 
X command 50 
XFER 261 
x llag 37 
XOPF BS, 89, 95 
XON 85, 89, 95 
x rcsi5lct 35, 74, 98, 121 

changing 60 
5ystem intcrmpl h<indlcr 1 Sl 

y 
Y register 35, 98, 121 

changing 6o 
system interrupt handler 181 

z 
Zap command 34, 87 
z.ero page 12, 15 
ZlDBYl'E 239 
Z1DB'!TE2 238 
Zilog Serial C.Ommunications 

Control !er chip 82 
ZMODll 257 

Index 327 



THE APPLE PUBLISHING SYSTEM 

This Apple manual was written, 
edited, and composed on a 
deskrop publishing system using 
lhe Apple M:a.cinrosh™ Plus and 
Microsoft Word Proof and 
final pages were created on the 
Apple LaserWriter® Plus, 
POSTSCRIP'J"1"M, the LaserWrit.er 
page-description language, was 
developed by Adobe Systems 
Incorporated. 

Text type is ITC Garamond® 
(a dowruoadable font discribured 
by Adobe Sy.stems). Display type 
is ITC Avant Garde Gothic®. 
Bullets are lTC .Zapf Dingbats®. 
Program listings are SC[ in Apple 
Courier, a monospaced font 



~ 
~-

rJirll 
~ 

=ci -

~l ~\ 



-

The Apple Technical Llbrary 
The Official Publications from 

pple Computer lnc 
The ppl ll!chni al Libra11· off et progr:.unmei:;, 
developei:;, and emhusiasr.s die most c mple(e 
technical infomliltion a\~tibble on Apple 
rnmpm rs, peripherals, an<l sofrware. The libmry 
ro11Sists o rechnical manulls for th Apple II family 
of computer: , the j.fattntt>5h ~ fumil ~· of rompu1 ers. 
and rhcir key ' ripht:rab and progr:unmlng 
environments. 

Mam1als fi r the App!e JI family indu<le technical 
references to th Apple El 1 Appk llr, and Apple 
!Jes compute , with d ~ilc:d Je.scrip<ions f the 
hardware, firmwar , Pronos• oper;1ting system~. 
and built-in piugr::imming cools th.at programmer~ 
and dc\doper. cm draw upon. Jn addition LO a 
tedm.icll irurodu tion aml pmgr:llllmer's guid~ 10 

lhe Appl IIG~, there Jn!' rumrials and references for 
pple oft &~ i and Instant P:l:iCal programmers. 

Manu~ r d1e Mnci:ntosh familr. known colle 'Livelv 
a.s the lnsid . Maci nt sh Library, ptu'•iide n )['npleae · 
technical re erenrei 1 lhe M~ci.mosh 5121\. 
Mad.rm: sh 51 .. K Enhance<l, facintosh Plu. ·, .\fadmc >Sh 

E, and Macim h Il compmers. lncLividu:.i.1 volumes 
provide cechnical imruduccioas ;md pmgr:unmer's 
guides lO rhe la inn h, , well as detai led 
iilfonrnti. n 'In hmlware, fumwarr, .~;.·"Slem 
software, and progr-Jm.rning cools. The ln';ide 
Macintooh Lil rarv offers the m detailed and 
comple1e urce ·of information a\'3.ilahle fiw the 
M cin h famUy of comput rs. 
In , ddidon1 ticie in I.flt Apple Technicil Llhrary off er 
rderences ID rhe wide range of important primers, 
rommmications standard~ and pmgran1ming 
t:m.ironments- . uch a: the tam:lanl Apple 
Ni:1merics Em 'mnment (SANE~ - lo help 
programmers and expelien ed u'ers get the mmr 
out of their computer system.5. 



The Official Publication from Apple Gomputer, Inc. 
Now programmers and designers have a comprehensive guide to the inner 
workings of d'le popular Apple OGS 1

• computer. 

Wirh its impressive 256K base mem011~ expandable to "M:l.I over meg.Jbytes, and 
irs enhanced color graphics and sound c:qxibilities, the Apple IlGs is destined to 
become the new standard in lhe eduaniooal axnprner market, and the choice of 
safrware dt'\rclopers. As lhe Apple llGS user OOse grows, more and f1lOre 

programmers need I.he irnportmt lechnical infurmarion fuund only in dlis manual. 
TheApple lJGS Firmware Reference the companion rolume ID me Apple Iles 
Hardware Reference is Apple's definitive guide rur assembly-language programmers 
and hanlware developers working with the Apple llG .. ln a single volume, it 
pro.ides an ~ensive description of lhe incernal operations of the machine and 
presents the lal:est information about che firmware fucilities that the Iles provides. 

1 

The manual begins with an overview of Apple llc;s fumware. Then. in derail, it tells 
haw m use the fumware ro access the system's monitor, mini-assembler, 
disassembler, keyboard, mouse, video display, serial pores, and disk drives. 
Deiailed appendixes coomin summary rabies and infonnation aboot rhe firmware, 
and cell how a user can include firmware calls within programs, d1ereby allowing 
the user co really luve contr-01 over lhe madline. The Apple IJGS Firmware Re[erena: 
provides me mCN amhoritalive and comprehensive information avaifable on this 
amuingly versarile romputer. 

0:30·31.ZM 
Prillell In USA. 

ISBN< 0-201-177~4-7 


	Front Cover
	Contents
	Preface
	Chapter 1 - Overview
	Chapter 2 - Notes for Programmers
	Chapter 3 - System Monitor Firmware
	Chapter 4 - Video Firmware
	Chapter 5 - Serial Port Firmware
	Chapter 6 - Disk II Support
	Chapter 7 - SmartPort Firmware
	Chapter 8 - Interrupt Handler Firmware
	Chapter 9 - Apple Desktop Bus Microcontroller
	Chapter 10 - Mouse Firmware
	Appendix A: Roadmap to the Apple IIGS Technical Manuals
	Appendix B: Firmware ID Bytes
	Appendix C: Firmware Entry Points in Bank $00
	Appendix D: Vectors
	Appendix E: Soft Switches
	Appendix F: Disassembler/Mini-Assembler Opcodes
	Appendix G: The Control Panel
	Appendix H: Banks $E0 and $E1
	Glossary
	Index
	Back Cover



