RSBl Apple [s™ Firmware Reference

.-..O‘O.‘.
-” L

& APPLE COMPUTER, INC.

Copyright © 1987 by Apple
Compuler, ne.

All rights reserved. No part of
this putdication mav be repro-
iduced, storred ina retrieval

system, or ransmitted, in any
form or by any means, mechan.
wal, electronic, photocopying,
recording, or otherwise, without
prior writlen permission of
Apple Computer, Ine. Printed in
the United States of America.

Apple, the Apple logn,
AppleTalk, Disk I, DucDisk,
Luser¥riler, and ProDDOS are
registered trademarks of Apple
Computer, Inc.

Apple DeskTop Bus,
AppleMouse, Apple 1IGS,
Macintosh, SANE, and UniDisk
are trademarks of Apple
Computer, Inc.

ITC Garamond, ITC Avant Garde
Gothic, and ITC Zapf Dingbars
are registered trademacks of
International Typeface
Corporation,

Microsoll is a registered trade-
mark of Microsell Corporation,

POSTSCRIFT is a trademark of
Adobe Svstems Incorporated.

Simullanecusty published in the
United States and Canada.

ISBN (-201-17744.7
ABCDEFGHII-DO-E987
First printing, May 1957

WAHRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
[MPLIETY WARRANTIES OF
MERCHANTABRBILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LTMITED IN

DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PLRI*OSE. AS A RESLILT, THIS
MANUAL IS SOLD “AS IS,* AND
YOU, THE PURCHASER, ARE
ASSUMING TIHE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even il advised of the
passibility of such damages.

THE WARRANTY AND REMEDIES
SET FOKRTH ABOVE ARE EXCLL-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agem, or employec is
authorized 1o make any modifica-
tioh, extension, or addition ta this
WAIranLy.

Some states do not allow the exclu-
sion or limitation of implicd warran-
ties or liability for tncidental or
conseguential damages, so the
zbove limitation or exclusion may
net apply 1o you, This warrancy
gives vou specilic legal rights, and
you may alsa have other righes
which vary from state 1o state.

Chapter 1

Contents

Figures and tables xlil

Preface xvii
About this manual xvii
What this manual contains xviii

Overview 1
A word about other Apple 1G5 firmware 2

Apple [IGS Toolbox 2
Applesoft BASIC 2
AppleTalk 3
Diagnostic routines 3

The role of firmware in the Apple 11GS system 3
Levels of program operation 4
Apple 1G5 firmware 4

System Monitor lirmware 4

Video firmware 5

Serial-port firmware 5

Disk Il suppert 5

SmartPoct lirmware 5
Inlerrupt-handler firmware &

Apple Deskiop Bus microconiroller 6
Mouse firmware 4

Chapter 2 Notes for Progrommers 7

Intreduction o the Apple [1G5 8

Microprocessor [eatures 8
Microprocessor modes 9
Execution speeds 9
Expanded memory 9
Super Hi-Res display 9
Digital sound synthesizer 10
Detached keyboard with Apple DeskTop Bus 10
Buill-in YO 11
Compatitde slots and game 170 connectors 11

Environment for the firmware routines 11

Setting up the system 12
Save your environment 12
Gel into bank $00 12
Set the D register 1o $0000 12
Set the DBR 10 $00 13
Save the value of the native-mode stack pointer 13
Select emulation mode 14

Returning to native mode 14
Restore the native-mode stack pointer 14
Restore your environment 14

Other requirements for emulation-mode code 15

Cautons about changing the environment 15
Stack and direct page 15
Data bank registers and e, m, and x flags 16
Speed- and Shadow-register changes 16
Language-card changes 16

General information 16

Apple 1IGS interrupts 16

Boolt/scan sequence 17

Program bank register 17

Exchanging the B and A registers, XBA 18

Chapter 3 System Menitor Firmware 19

Invoking the Monitor 20
Monitor command syntax 21
Monitor command types 21
Monitor memory commands 25
Examining memory 26
Examining consccutive memory locations 27
Changing memory contents 28
Changing onc byte 28
Changing consecutive memory locations 29
ASCII input mode 30
ASCII fihers for stored data 31
Moving data in memory 31
Comparing datsd in memory 33
Filling a memory range 34
Searching for byles in memory 34
Registers and flags 35
The environment 36
Examining and changing registers and flags 36
Summary of register- and flag-modification commands 38

kY Contents

Miscellaneous Monitor commands 39
Inverse and normal display 39
Working with me and date 40
Redirecting input and output 40
Changing the cursor character 41
Converting hexadecimal and decimal numbers 41
Hexadecimal math 42
A Tool Locator call 43
Back 12 BASIC 43
Special tricks with the Monitor 44
Multiple commands 44
Filling memaory 45
Repealing commands 46
Creating your own commands 47
Machine-language programs 48
Running a program in bank zero 49
Running a program in other banks of memory 50
Resuming program operation 50
Stepping through or tracing program execution 50
The mini-assembler 51
Starting the mini-assembler 51
Using the mini-assembler 51
Mini-assembler instruclion formats 54
The Apple 1IGS tools 55
The disassembler 35
Summary of Monitor instructions 57

Chapterd Video Firmware &9

Standard 1/ links 70
Standard input routines 71
RDKEY input subrouting 71
KEYIN and BASICIN input subroutines 71
Escape codes 72
Cursor control 72
GETLN input subroutine 74
Editing with GETLN 75
Keyboard input buffering 75
Standard oulput routines 76
COUT and BASICOUT subroutines 76
Contral characters with COUT1 and C3COUT1 76
Inverse and flashing text 78
Other firmware /O routines 79
The text window B0

Contents

Chapter 5 Serlal-Port Firmware 81

Compatibility 82
Operaling modes 83
Printer mode 83
Communications mode B3
Terminal mode 83
Handshaking 54
Hardware, DTR and DSR 84
Software, XON and XOFF 85
Operating commands 86
The command character B7
Command strings 87
Commands useful in printer and communications modes B3
Baud rate, nB E8
Data format, n> 88
Parity, nF 89
Line length, niN- B9
Enable line formatting, CE and CD 89
Handshaking protocol, XE and XD 82
Keyboard input, FE and FD 90
Automatic line feed, LE and LD 90
Tesct the serial-port firmware, R 90
Suppress control characters, Z 90
Commands useful in communications mode 91
Echo characters 1o the screen, EE and ED 91
Mask line feed in, ME and MD 91
Input buffering, BE and BD 91
Terminal mode, T and Q@ 91
Tab in BASIC, AE and Al 92
Programming with serial-port firmware 92
BASIC imerface 93
Pascal protocol for assembly language 93
Error handling 95
Buffering 93
Interrupt notification 96
Background printing 97
Recharge routine 98
Extended interface 99
Mode control calls 100
GeModeBits 100
SetMadeBits 100

W Contents

Chapter é

Chapter 7

Buffer-management calls 101
GetlnBuffer 101
GetOutBuffer 101
SetinBuffer 102
SetOutBuffer 102
FlushInQueue 102
FlushOutQueue 102
InQStatus 103
OuQStas 103
SendQueue 103

Hardware control calls 104
GetPortSiat 104
GetSCC 104
SetSCC 105
GetDTRE 105
SetDTR 105
GetlntInfo 105
Setintinfo 106

Disk Il Support 109
Startup 112

SmartPert Firmware 113

Locating SmartPort 114
Locating the dispatch address 115
SmartPort call parameters 116
SmartPort assignment of unit numbers 117
Mlocation of device unit numbers 117
Issuing a call 1o SmartPort 120
Generic SmartPort calls 121
Starus 121
Required parameters 122
SmartPort driver status 125
Possible errors 125
ReadBlock 126
Required parameters 126
Possible errors 126
WriteBlock 127
Required parameters 127
Possible errors 127
Format 128
Format call implementation 128
Required parameters 128
Possible errors 128

wll

Control 129
Required parameters 129
Possible errors 130
Init 130
Required parameters 130
Possible errors 130
Open 131
Required parameters 131
Possible errors 131
Close 131
Required parameters 132
Possible errors 132
Read 132
Required parameters 133
Possible errors 133
Write 134
Required parameters 134
Passible errors 135
Device-specific SmartPort calls 138
SmartPort calls specific to Apple 3.5 disk drive 138
Eject 138
SetHook 138
Read Address Field 139
Write Data Field 139
Seck 139
Format 139
Write Track 130
YVerify 140
ResctHook 140
SetMark 140
ReserMark 141
SetSides 141
Setlnterleave 141
SmanPor calls specific to Unilisk 3.5 142
Eject 142
Exerute 142
SetAddress 143
Download 143
UniDiskStat 143
UniDisk 3.5 internal functions 144
Mark rable 144
Hook table 145

Wil Contents

Chapter 8

UniDisk 3.5 internal routines 146
RdAddr 146
ReadDara 146
WriteData 147
Seek 147
Format 147
WriteTrk 148
Verify 148
Vector 149
Memory allocation 150
ROM disk driver 152
Installing a ROM disk driver 152
Fassing parameters to a ROM disk 152
ROM organization 154
Summary of SmartPort error codes 156
The SmartPort bus 157
How SmanPort assigns unit numbers 157
SmartPort-Disk 1T interaction 158
Other considerations 158
Extended and standard command packets 159
SmartPort bus flow of operations 159

Interrupt-Handler Firmware 169

What is an interrupt? 171
The built-in interrupt handler 172
Summary of system interrupts 175
Interrupt vectors 177
Interrupt priorities 177
RESET 178
NMI 178
ABORT 179
COP 179
BRK 179
IRQ 180
Environment handling for interrupt processing 181
Saving the current environment 181
Going to the interrupt environment 182
Restoring the original environment 182
Handling Break instructions 183
Apple 1IGS mouse interrupts 183
Serial-port interrupt notification 183

Contents

Chapter® Apple DeskTop Bus Microcontroller 185

ADB microcontroller commands 188
Abort, $01 188
Resel Keyboard Microcontroller, 302 188
Flush Keyboard Fuffer, $03 188
Set Modes, 504 189
Clear Modes, 305 189
Sel Configuratinn Byles, 506 190
Sync, §07 191
Wrile Microcontroller Memory, $08 191
Read Microcontroller Memory, 309 191
Read Maodes Byte, $0A 191
Read Configuration Bytes, 508 192
Read and Clear Error Byte, $00 192
Get Version Number, 30D 192
Bead Available Character Sets, $30E 193
Read Available Kevboard Layours, $0F 193
Resct the System, $10 193
Send ADB Keycode, $11 193
Resel ADB, 840 194
Receive Byles, 348 104
Transmit num Bytes, $49-54F 194
Enable Deviee SR, $50-§5F 194
Flush Device Buffer, $60-56F 195
Disable Device SRQ, $§70-%7F 195
Transmit Two Bytes, $80-5RF 105
Poll Device, $CO-SFF 195
Microcontroller status byte 196

Chapterl0 Mouse Firmware 197

Mouse position data 199
Register addresses—firmware only 200
Reading mouse position data—{irmware only 200
Position clamps 201

Using the mouse firmware 202
Firmware entry example using assembly language 202
Firmware entry example using BASIC 203
Reading button 1 status 204

Mouse programs in BASIC 206
Mouse Move program 206
Mouse Draw program 207

Summary of mouse firmware calis 209

Contents

Appendix A

Appendix B

Appendix C

Appendix D

Pascal calls 210
Pleit 210
PRead 210
FW¥rite 210
PStarus 210
Assembly-language calls 211
SETMOUSE, §C412 211
SERVEMOUSE, $C4135 212
READMOUSE, $C414 212
CLEARMOTISE, $C415 212
POSMOUSE, $C416 213
CLAMPHOUSE, $417 213
HOMEMOUSE, 3418 214
INITMOUSE, 5419 214

Roodmap to the Apple llcs Technical Manuals 215

The introductory manuals 218
The technical introduction 218
The programmer's introduction 218
The machine reference manuals 219
The hardware reference manual 219
The lirmware reference manual 219
The 1oolbox reference manuals 219
The programmer's workshop reference manual 220
The programming-language reference manuals 220
The operating-system refcrence manuals 221
The all-Apple manuals 221

Firmware ID Byles 222

Firmware Entry Polnts In Bank $00 224

Vectors 258

Bank 300 page 3 vectors 259

Bank 500 page C3 routines 26

Bank S00 page Fx vectors 262

Bank $E1 vectors 264

IRQQAPTALK and IRQ SERIAL vectors 266
IRQSCAN through IRQUOTHER vectors 267
TOWRIMTEBR through MSGPOINTER vectors 272

Contents

¥l

Appendix E Sofl Swilches 276

Appendix F Disassembler/Mini-Assembler Opcodas 293

Appendix G The Confrol Panel 299

Control Panel parameters 290

Printer port 300

Modem part 301

Display 302

Sound 303

Speed 303

RAM disk 303

Slots 304

Options 304

Clock 306

Quit 306
Battery-powered RAM 306
Control Panel at power-up 307

Appendix H Banks $E0 and $E1 308

Using banks $£0 and $E1 310
Free space 310
Language-card area 310
Shadowing 310

Glossary 311
Index 321

«l Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Figures and tables

Overview 1

Figure 1-1 Levels of program operation 4

Notes for Programmers 7

Figure 2-1 Boot-failure screen 17

Figure 2-2 Accumulator for emulation and native modes 18

Table 2-1 Super Hi-Res graphic modes 10

System Menitor Firmware 19
Table 3-1 Monitor commands grouped by type 23
Table 3-2 Commands for viewing and modifying memory 25
Table 3-3 Registers and flags 35
Table 3-4 Commands for viewing and modifying registers 37
Table 3-5 Miscellaneous Monitor commands 39
Table 3-6 Commands for program execution
and debugging 48
Table 3-7 Mini-assembler address formats 54

Table 3-8 Opcodes affected in immediate mode 57

Video Firmware 49
Table 4-1 Escape codes and their functions 73
Table 4-2 Prompt characters 74
Table 4-3 Control characters with B0-column firmware off 77
Table 4-4 Control characters with 80-column firmware on 77
Table 4-5 Text format control values 78
Table 4-6 Partial list of other Monitor firmware
/O routines 79
Serial-Port Firmware 81

Figure 5-1 Handshaking when DTR/DSR option is turned on 84
Figure 5-2 Handshaking when DTR/DSR option is turned off 85
Figure 5-3 Handshaking via XON/XOFF 85
Figure 5-4 Summary of extended serial-port

buffer commands 107
Figure 5-5 Summary of extended serial-port

mode and hardware control commands 108

il

xiv

Chapter 6

Chapter 7

Figures and tables

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6

Table 5-7

Baud-rae selections 88

Data-format selections 88

Parity selections 89

Terminal-mode command characters 92

Service routine descriptions and address effsets 93
/0 routine offsets and registers

for Pascal 1.1 firmware protocal 94

Interrapt setling enable bits 106

Disk Il Support 10%

Figure 6-1
Table 6-1

Order of disk drives on Apple 11GS disk pons 110
Disk I 1/0 port charactenstics 111

smortPort Firmware 113

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Table 7-1
Table 7-2

Table 7-3

Table 7-4
Table 7-3
Table 7-6
Table 7-7
Table 7-8
Table 7-9

SmanPaort 1D type byte 115

Diovice mapping: configuration 1, derivation 1 118
Device mapping: configuration 1, derivation 2 118
Device mapping: configuration 2, derivation 1 119
Dreviee mapping: configuration 2, derivation 2 119
Device mapping: configuration 2, derivation 3 119
SmartPort device subtype byte 124

Disk-sector format 140

Unilisk 3.5 memory map 150

The ROM disk 154

Block diagram of a 128K ROM disk 155

SmartPort control flow 159

SmartPort bus communications; read protocol 161
SmartPont bus communications: write protocol 162
SmartPort bus packet format 163

SmartPort bus packet contents 164

Bit layout of a 7-byte data packet 165

Transmilting a 1-byte data packet 165

Register status on return from SmarnPort 121
Summary of standard commands

and parameter lists 130

Summary of extiended commands

and parameter lists 137

UniDisk 3.5 gate array 1/} locations 151

UniDisk 3.5 I'WM locations 151

SmartPort error codes 156

Data byte encoding table 164

Standard command packel contents 166

Extended command packet contents 167

Chapter 8

Chapter 9

Chapter 10

Appendix A

Appendix B

Appendix E

Appendix G

Appendix H

Interrupt-Handler Firmware 1569

Figure 8-1 Built-inn interrupt handler 172
Table B-1 Summary of system interrupts 175
Table B-2 Interrupt vectors 177

Apple DeskTop Bus Microconkroller 185
Figure 9-1 Apple DeskTop Bus components 186

Table 9-1 Bit functions 189
Table 9-2 Keyboard language codes 100
Table 9.3 Status byte returned by microcontroller 196

Mouse Firmware 197

Figure 10-1 Bution interrupt status byte, $77C 205
Figure 10-2 Mode byte, $7FC 205

Table 10-1 Apple 1IGS mouse data bits 199

Table 10-2 Apple 11GS mouse register addresses 200
Table 10-3 Position and status informaton 205
Table 10-4 Mouse firmware ¢alls 200

Roadmap to the Apple llss Technical Manuals 215

Figure A-1 Roadmap to the technical manuals 217
Table A-1 Apple 11GS technical manuals 216

Firmware ID Bytes 222

Table B-1 ID information locations 222
Table B-2 Register bit information 223

Soft Switches 274

'fable E-1 Symbol table sorted by symbol 291
Table E-2 Symbol table sored by address 202

The Control Panel 299
Table G-1 Language options 305

Banks $E0 and $E1 308
Figure H-1 Memory map of banks $E0 and $E1 309

Figures and tables E LY

Preface

This is the firmware reference manual for the Apple® 11G5™ campuier. It is for
hardware designers and programmers who wam to wark with the system firmware in
lieu of using the Apple 1IGS Toolbox routines to accomplish similar goals.

About this manual
As part of the Apple T1G5 1echnical suite of manuals, the Apple [IGS Finnware
Feference covers the design and function of the [irmware that drives the Apple 11G5. Il

pravides information about the entry points for the lirmware and describes the
firmware functions and limitatians.

% MNotee None of the manuals in the technical suite stands alone. Other manuals in the
suile describe various tools to accomplish tasks that the firmware can also perform.
You should become familiar with the contents of the other Apple 11G5 manuvals
because [or most applications, vou may nol need 1o directly use the firmware,

The audience for this manual includes programmers who want 10 work with the
firmware and application programmers who wish to convert or upgrade existing
applications for the Apple II, 1T Plus, He, or llc to take advantage of the new functions
available on the Apple IIGSs.

¢ Note: Applicatons written explicitly for the Apple e can be booled on the
Apple 11GS, wilh no discernible difference in their operation.

This manual does not incorporate any descriptions of hardware; see the Apple oy
Narvdware Reference for this information,

wi

What this manual contains

Chapter 1, *Cwverview.” provides an overview of the Apple HGS firmware.

Chapter 2, “Notes for Programmers,” provides information for those who are already
familiar with other Apple Il computers.

Chapter 3, “System Monilor Firmware," shows how 10 use the system Monitor (o
examine and change memory or regislers and to write and debug small machine.
languape programs.

Chapter 4, "Video Firmware,” describes the text input and catput facilities of the
Apple IIGs.

Chapner 5, “Serial-Port Firmware,” describes the features and functions of the buili-in
serial port.

Chapter 6, *Disk II Suppon,” describes the firmware suppon for the Apple Disk II®
product.

Chapter 7, “SmarFPort Firmware," defines and describes the SmartPor firmware as
implemented on the Apple 11GS,

Chapter B, “Interrupt-Handler Firmware," describes in detail the method by which
various kinds of interrupts are processed.

Chapter 9, "Apple DeskTop Bus Microcontroller,” describes the firmware portion of
the Apple DeskTop Bus™. For a complete picture of this subsystem, you need this
manual, the Apple HGS Hardware Reference, and the Apple 1GS Toolbox Reference,

Chapter 10, *Mouse Firmwaire,” describes the Apple 1165 mouse interface.

Appendix A contains 3 roadmap to the Apple 11GS technical manuals, Read 1his
appendix 10 determine which books you need to learn more aboutl a programming
language, the Apple IIGS hardware, or some other aspect of the Apple 11GS computer.

Appendix B conuins a list of the firmware ID byles. ‘Ihe informaticn lets you
determine which machine in the Apple 11 family is running vour program. By
examining these [1 bytes, you can allow your program o take advantage of the features
available on a particular member of this Tamilv,

Appendix C describes the firmware entry points for the Apple 11GS, as well as the side
effects of each routine,

Appendix D deseribes the firmware veaors, By jumping Lo vectors instead of directly
to particular firmware roulines, you can maintain compatibility between your program
and future releases of the Apple 11GS firmware.

Appendix E describes the soft switches that contral various aspects of system
behavior. These switch locations and contents are provided for reference only, The
contents of the swilches should be moditied only by system tools.

il Preface

Appendix F lists the disassembler/mini-assembler opcodes. These will be useful 10 1he
machine-language programmer who uses the syslem Monitor to enter small programs
for quick wests.

Appendix G describes the Control Panel options and defaulis,
Appendix H describes the contents of memory banks $E0 and $E1.

A glossary follows the appendixes.

What this manual contains Hin

Chapter 1

Overview

This chapter gives a brief overview of the Apple 1IGS firmware and how it relates o the
rest of the system saftware. The Apple [IGS lirmware is composed of various routings
that are stored in the system's read-only memory (ROM), ‘The Apple IIGS firmware
rouiines provide the means o adapl and control the Apple TIGS system.

Routines for the following Apple [1GS firmware are covered in this manual:
svsicm Monitor irmware

s wideo (rmware (1A routines)

= senal-port firmware (for character-at-a-time 1/0)
sk 11 support (slot 6 support)

= SmurPoct firmware (for block device L/O)

i

inlerrupt-handler firmwang
L Apple DeskTop Bus (ADB) microcontroller

mouse firmware

Ei

A word about other Apple lIGS firmware

ot all Apple 11GS firmware is discussed in this manual. The Apple 11GS ROM contains
oiher firmware, impodant enough to warrant separate manuals: the Apple (1G5
Toolbox (described in detail in the Apple [IGS Toolbox Reference), Applesoft BASIC
{described in the Applesoft BASIC Reference), and the AppleTalk® Personal Network
(described in fnside Applefalk).

Apple liGs Toolbox

The Apple 1165 Toalbox provides a means of easily constructing application programs
without necessarily using the firmware routines described in this manual. Programs
that vou comstruct using the wols will conform to the Apple Human uierface
Cuidelines. By offering a common set of routines that every application can call 1o
implement the user interface, the tools not only ensure familiarity and consistency for
the user but also help to reduce the application’s code size and development lime,

Applesoft BASIC

The Apple 11GS also has Applesoft BASIC in ROM so that vou can create and run your
o programs in BASIC

2 Chapter 1. Cwenview

Applefulk

Applelalk is 4 Incal-area network that allows communication and resource sharing by
up to 32 computers, disks, printers, modems, and other peripheral devices.
AppleTalk consists of communicalion hardware and a set of communication
prolocols. This hardware/software package, together with the computers, cables and
eonnectors, shared resource managers (servers), and specialized application
software, functions in three major configurations: as a small-area interconnecting
system, as a tributary to a larger network, and as a peripheral bus between Apple
computers and their dedicated peripheral devices.

Diagnostic routines

The system diagnoslic routines are manufaciu ring oSt roulines, No external eniry
points are defined for system diagnostic routines at this time. Thus, diagnastic
routines are not documented in this manual.

The role of firmware in the Apple lIGS system

The firmware is that set of low-level routines that provides programmers with an
inlerface to the system hardware, The firmware, in trp, controls the displav, the
mouse, sefial inpul/output (1/0), and disk drives. Firmware programs, such as the
Monitor and the Control Panel, work directly with the system memory.

Traditionally, programmers have controlled hardware directly through their
application programs, bypassing any system firmware. The disadvantage of this
approach is that the programmer has to do a lot more work. More important,
bypassing the firmware increases the likelihood that the resulting program will be
incompatible either with other programs or with future versions of the compuier, By
using 1he firmware interface, a programmer can maintain compatibiliny with current
and future releases of the system.

For most of the functions that the firmware eniry points perform, there are eruivalent
functions provided in the oolbox. The toalbox routines, in addition 1o performing
like functions, also save and restore svstem registers when they are called. Read
Chapter 2, “Nutes for Programmers," for more detaits about SYSICIT TEeRISIEr Wsage.

The role of firmware in tha Apple lles system

‘l.}évels of program operation

Y¥ou can think of the different levels of program operation on the Apple 1G5 as a
hierarchy, with a hardware layer a1 the botlom, Grmware lavers in the midle, and the
application at the top. Figure 1-1 shows a hierarchy of command levels; in general,
higher-level compenents call on lower-level ones. Clhe levels are separated by lines,
the hardware components have heavy autlines.)

Application

ProDOS Loadear

Monitar Firmware Drivers Toolbox

CPU Memaory Keyboard Display

Slots

Figure 1-1
Levels of program operafion

Apple lIGS firmware

The following sections provide an overview of the Apple 1163 firmware described in
this manual

System Monitor firmware

The system Monitor firrnware is a set of routines that vou can use 0 operate the
compuler at the machine-language level You can examine and change memory
locations, examine and change registers, call system routines, and assemble and
disassemble machine-language programs using the systerm Monitor {irmware.

4 Chapter 1: Ovarview

Video firmware

Video firmware allows you to manipulate the screen in low-resolution mode and text
mode through your application programs and from the kevboard Comrmunication
between the keyboard and the videa screen is controlled by firmware subroutines,
escape codes, and controd chacacters. The video firmware provides on-screen
editing, keyboard inpot, outpul to the screen, and cursoe-control Facilities.

Serial-port firmware

The Apple (1G5 serial-port firmware provides a means [0 allow serial communication
with external devices, such as printers and modems, The sedial port firmware

provides support for such options as hardware and software handshaking and
background printing. There are twa serial ports, either of which can be configured as a
printer port or & modem port.

Disk Il support

The Apple TGS Disk |1 firmware is a disk-suppor subsysten. It uses a built-in Integrated
Woz Machine (F'WM) chip and accommodates Disk 1 (Dualisk® or Unildisk ™) drives
Slot & is the standard Disk 11 support slot The firmware that communicates with the
WM at boot ume provides support lor booting Disk [I-based software. (ithor handling
oi Disk Il devices is a function uf whichever disk operating system is booted.

SmartPort firmware

Disk I devices are direclly manipulaied by slet & contral hardsvare, Intelligent Jovices,
by contrast, are not dircelly manipulated by hardware, bul rather are controlled bay
software-driven command streams, Such devices are labseled fnteilipent devices
because they have their own controllers, which can interprel these cormmand streams.
The SmanPort firmware (s a set of assembiv-language routines that PRErITEL yealn Ly
altach one or more imelligent devices (o the exeernal disk port of the Apple 11GS
system. Using the SmanPort firmware, vou can controt these devices through
SmartPon calls, such as Open, Clise, Format, ReadBlock, and Writelilock.

Apple llzs frmware

Interrupt-handiler ﬁrmwaré N

Sysiem interrupts hall the execution of a program or the performance of a funcion or
feature. The system contains buill-in interrupt-handler firmware, a user's interrupt-
handler entry point, and a means to notify the user when an interrupt ocours,

Apple DeskTop Bus microcontroller

The Apple DeskTop Bus (ADB) microcontroller is used 1o reccive information from
peripheral units attached 10 the Apple DesklTop Bus. The ADB microcontroller polls
the imernal keyboard, sensing key-up and key-down events as well as contral keys, and
optionally buffers keyvsirokes for later access by the 650816, In additon, the ADB
microcentroller acts as host for ADB peripheral devices, such as the detachable
keyboard and mouse. The ADB microcontroller has its own buill-in set of
instructions, including Talk, Listen, SendReset, and Flush.

Mouse firmware

The Apple 11GS mouse firmware supplies the communication protocol for sensing the
current status of the mouse, The mouse firmware tracks mouse-device position data
and butlan status and provides entry points for assembly-language control,

& Chapter 1: Overview

Chapter 2

Notes for
Programmers

This chapter contains information that will be useful to the experienced 6502
programmer as well as someone just beginning to use the Apple 11GS computer.

The Apple 11GS has many new features not found in previous Apple computers.
Frograms writlen for the Apple Tlc or the Apple Ile will run on the Apple 11GS, but do
not take advantage of these new feaures,

Among the new features of the Apple 11GS is a new set of registers, pseudoregisters, and
flags, collectively known as the environment. Before you change the environment
for the Apple 11GS systern, read the following sections, which outline these new
features.

Introduction to the Apple lIGs

The Apple JIGS personal computer is a new Apple [l with many high-performance
features. Highlights include

4 maore powerful microprocessor with faster operation and larger memory
= high-resoluion RGB video for Super Hi-Res color graphics

m multivoice digital sound synthesizer

o detached keyhboard with Apple DeskTop Bus connector

O built-in 170 dock, disk port, and serial ports with AppleTalk interface

1 compatible slois and game 1O connectors

Thus list includes only the main features of the Apple 11Gs. For a comprehensive list of
features. refer (o the fechnical mtroduction to the Apple 1IGS.

Microprocessor features

The microprocessor in the Apple 1IGS is a 65C816, a 16-bit design based on the 6502
Amaong the features of the 65C816 are

2 absility to emulate a 6502 8-bit microprocessor

M 16-bit accumulator and index registers

= rolowvatalrle stach aind eviws gk Cllicol page?

M 24-bit internal address bus for 16-megabyte memory space

8 Chapter 2: Notes for Programmers

Microprocessor modes

The 650816 microprocessor can operale in two different modes: native mode, with
all of its new features, and 6502 emulation mode, for running programs written for 8-
bit Apple 11 computers.

If you are using emulation mode extensively, you will be using the firmware calls
described in this manual. If you are using native mode, you probably will want to use
the equivalent toolbox calls instead of directly calling the firmware. The toolbox calls
save and restore the environment for you,

Execution speeds

The microprocessor in the Apple 1IGS can operate at either of two clock speeds: the
standard Apple Il speed of 1 MHz and the faster speed of 2.8 MHz, When running
programs in RAM, the Apple I1GS uses a few clock cycles for refreshing memory,
making the effective pracessing speed about 2.5 MHz. System firmware, running in
ROM, runs at the full 2.8 MHz.

Expanded memory

Thanks 10 the 24-bit addresses of the 65CB16, the Apple 1IGS has a memory space
lotaling 16 megabytes. OF this total, up to 8 megabytes of memory are available for
RAM expansion, and 1 megabyte is available for ROM expansion. For additional
information about memory, read the Technical miroduction to the Apple HGS.

The minimum memory in the Apple IG5 is 256K. Programs written for the

Apple 11GS—that is, programs that run the 65CB16 microproecssor in native mode,
tharaby gaining tho ability to addrcas miore than 1260 of IS HIONy —CA1h USE Up 10 aDoul
176K of the 256K. The rest is reserved for displays and for use by the system firmware.

The Apple 1IGs also has a special card slot dedicaled to memaory expansion. All of the
RAM on a memory-cxpansion card is available for Apple 11GS application programs
that call the Memory Manager. Expansion memeary is contiguous: Its address space
cxiends without a break through all of the RAM on the card. Expansion RAM on the
Apple IIGS is not limited to use as data siorage; program code can run in any part of
RAM,

Super Hi-Res display

In addition to all the video display modes of the Apple ¢ and Apple Ile, the

Apple 1165 has two new Super 11i-Res display modes that look much clearer than
standard Hi-Res and Double Hi-Res. Super Hi-Res is also easier to program because it
maps entire byles onto the screen, instead of 7 bits, and its memory mapr is linsar,

Intreduction to the Apple lizs

Lised with an analog RGB video monitor, the new display modes produce high-
quality, high-resolution color graphics. Table 2-1 lists the specifications of the two
new graphics display modes.

Table 2-1
Super Hi-Res graphlcs modes
Resolution
- Bits per Colors Colors Colors
Mode Horlz, Yart, plxel perline On SCreen possible
3240 320 2040 4 16 256 4006
B40 640 200 2 16* 256* 4006

" Different pixels in 840 mode use different pans of the paletie.

% Note: Pixel is short for piciiere element. A pixel corresponds 1o the smallest dot you
can draw on the screen.

Fach dent on the Super Hi-Res screen corresponds to a pixel. Cach pixel has either a
2-bit {640 mode) or a 4-bit (320 mode) value associated with it. The pixel values select
colors from programmable color tables called pafettes. A palette consisis of 16
cntries, 2nd each entry is a 12-bit value specifying one of 409 possible colors,

In 320 made, each pixel consists of 4 bits, so it can select any one of the 16 colors in a
palette. In 640 mode, each byte holds four 2-bit pixels. The 16 colors in the palette are
divided into four groups of 4 colors each, and successive pixels select from successive
groups of 4 colors. Thus, even though a given pixel in 640 mode can be one of only 4
colars, different pixels in a line can take on any of the 16 colors in a palene.

To Turther increase the number of colors available on the display, there can be as
many as 16 different palettes in use at the same time, allowing as many as 256 different
colors on the screcn.

Digitul sound synthesizer

In addition to the single-hit scund output fovnd in other computers in the Apple 11
family. the Apple 11GS has a new digital sampling sound system built around a special-
purpose synthesizer IC called the Digital Oscillator Chip, or DOC for short Using
the DOC, the Apple 1lGs can produce 15-voice music and other complex sounds
withioul tying up ils main processor, Refer (o the Apple 1G5 Hardware Reference for
deiails about the sound sysiemn and the DOC,

Detached keyboard with Apple DeskTop Bus

The new detached kevboard includes cursor keys and a numeric kevpad. The Apple
DeskTop Bus, which supports the keyboard and the Apple mouse, can alsi handle
other input devices such as joysticks and graphics tablets.

10 Chapter 2: Motes for Programmers

Built-in 1/O

Like the Apple ilc, the Apple 11GS has two built-in disk ports and two serial O ports.
Programs can use the built-in ports and peripheral cards in slois. The built-in
AppleTalk interface uses one of the serial ports.

The Apple 11GS also has a built-in clock-calendar with a bauery for continuous
pperation.

Compatible slots and game 1/O connectors

In addition to the memary-expansion slot, the Apple I1GS has seven 1/O expansion
slots like those on the Apple Tle. Most peripheral cards designed for the Apple [Plus
and the Apple lle will work in the Apple 11GS slots. The Apple 1IGS also has game 1/0
connectors for existing game hardware.

Environment for the firmware routines

Many useful subroutines are listed in Appendix C, "Firmware Entry Points in Barnk
$00.7 All of these routines have one thing in common: To use them, the processor
must be set up 1o look and act exactly like a 6502 in all respects. You must therefore set
the operating environment to cause this transformation 1o happen.

Important

This saction contalns the speclfic detalls about setting and restoring the
environment before calling and after returning from calling the firmware routines.
You must follow these requirements exactly. or your program will fall.

The specific operaling environment requirements for all these routines are as follows:
7 d bit = 0 {decimal-mode [

O e bit = 1 {emulation-mode bit

C D register = $0000 (direci-page register)

DBR register = $00 (data bank register, called B in Chapter %)

7 PBR register = 300 (program bank register, called K in Chapter 3)

L?

O 5 register = 307xx (stack pointer)

% Note: If vou make tools calls instead of using the firmware directly, yvou will not have
1 worry about the operating environment. The tool calls handle the environment
{or you,

Ervironment for the firmware routines 11

Setting up the system

To correctly prepare the system for calling the firmware routines, you must take several
sleps:

O Save your environment,

Get into bank $00: JSL (jump to subroutine long) to a routine in bank $00.

Set the D register to $0000.

Set the DBR to $00.

Save the value of the native-mode stack pointer, and set the stack pointer to the
value of the emulation-mode stack pointer,

O Select emulation mode: set the e bit to 1.

o oo o

These steps make the 65C816 appear to be a 6502 microprocessor operating in its
normal environment. Now you can set up the machine registers with the parameters as
required by the particular firmware routine and execute a JSR (jump 1o subroutine),
These steps are explained in the sections that follow.

Save your environment

The environment is the complete set of machine registers and flags that your program
uses, Besides machine registers, the environment includes such things as processor
speed, read-only memory (ROM) bank, language-card bank, and random-access
memory (RAM) shadowing,

When you run the various firmware routines, the system will use the machine registers
for its own purposes. If you depend on a particular register having a specific value
when you finally return to your own code, then save that register's contents on your
native-mode stack or wherever else you wish so that you can restore the register's
contents before you return to your other program code. To determine which registers
each firmware routine uses or affects, see Appendix C, *Firmware Entry Points in Bank
500."

Get into bank $00

If you attempt to run the 65C816 in emulation mode in any bank other than bank $00,
no interruplt processing can take place. You enter program bank $00 by executing a J5L
(jump to subroutine long) to someplace in bank $00 (if you are not already there),
where the next steps are performed. This J5L sets the program bank register (K) to $00,
fulfilling that part of the firmware routine requirement. If you did not save your
environment before entering bank $00, now would be an equally good time to do so.

Set the D register to $0000

A 6502 expects its zero page (called the direct page for the 65C816 when operating in
native mode) to exist in the microprocessor address range of $00 1o $FF. When the D
register is set to 0, the zero page gets positioned correctly for a 6502.

12 Chapter 2: Notes for Programmers

Set the DBR to $00

The DER is the upper 8 bits of the 24-bit data address. The DBR must have a value of
$00 for the firmware routines to function.

Save the value of the native-mode stack pointer

When you switch to emulation mode, the upper 8 bits of your stack pointer will be lost.
Thus, this value must be saved somewhere so that it can be restored to its original value
on exit from this routine. The most common technique is to save the value of the

entire native-mode stack pointer on the emulation-mode stack.

¢ Note: The main and auxiliary stack-page switches cannot be used in native mode.
Thus, when switching to emulation mode, you must use the main stack.

The routine that follows saves the native-mode stack pointer and correctly sets the
values for the direct-page register and the data bank register. If your program requires
other values for the direct-page and data bank registers, save these environment
variables (as well as other register values in your environment) so that you can restore
the values after returning from the firmware routine that you call. The EMULSTACK
routine can be appended to the beginning of your own firmware calling sequence. A
corresponding routine to restore the native-mode stack pointer is given in the section
“Returning to Native Mode" later in this chapter.

sBefore entry, save YOUR environment!

EMULSTACK EQD 5010100 iEmulation stack polinter is zaved here
TOEMUL REPF #530 $16-bit m and x
TSC iTemporary save of native-mode stack pointer
TAX
SEP #3520 ;B=bit m
XBA iGet stack pointer page
DEC & i1s stack already in page 17
BEQ ALREADYPGL ;If so, don't get emulation stack polnter
LDA k501 ;8et stack page to 501
KBA
LDA EMULSTACK ;Cet emulation stack pointer
TCS i5et emulatieon stack pointer
ALREADYPG] PHX ;5ave native-mode stack pointer
S5EC ;Emulation mode
ACE ;5et emulation mode
PEA 50000
PLD :Set direct-page reglster to 50000
LDA #0
PHA
PLB iSet data bank reglster to $00

iHere continue with YOUR processing

Ervironment for the firmware routines

13

Select emulation mode

Setting the e bit to 1 puts the 65C816 into emulation mode and automatically sets the m
and x processor status bits to 1. The x bit forces the X and Y registers to be treated as
only 8 bits wide. The m bit forces the accumulator to be treated as only 8 bits wide.
This step also affects the size of the stack and the contents of the stack register.
Specifically, the value of the upper 8 bits of the stack pointer is forced to a value of
hexadecimal 501 (the same as the 6502). While you are in emulation mode, these
upper 8 bils never change. Thus, the size of the stack is restricted to 256 bytes.

MNow you can set up the machine registers as required by the particular firmware routine
and JSR.

Returning to native mode

To return to native mode, you must perform a set of steps complementary to the
preceding steps that caused your program to enter emulation mode in the first place:
0 Restore the native-mode stack pointer.

O Restore your environment (if you are within the bank $00 entry routine).

Then you ecan execute an RTL (return from subroutine long) to your point of origin

(assuming that you performed a J5L to enter this code in the first place). These two
return steps are explained in detail in the next two sections.

Restore the native-mode stack pointer

Return to native mode. The following example is the complement to the preceding
example that saved the native-mode stack pointer. Notice that this routine also returns
the processor to native mode (it sets the e bit to 0 and then sets the m and x bits to 0).

PHP ;Preserve firmware's c (carry) status

CLC iSet native mode

XCE sIc's 2t111 in B-bit

PLP ;Restore the carry flag

REP #3530 iSet le-bit

PLX :Get native stack pointer from emulation stack
X5 :S5at the native-mede stack polinter

;Now restore the rest of your environment!

Restore your environment

Restore all of your regisiers and flags to the values that your program expects io find on
return.

Assuming that you used a JSL in the code that saved your environment and your native-
mode stack pointer, vou can now perform an RTL and resume execution of your
program.

14 Chapter 2: Notes for Programmers

Other requirements for emulcﬂiﬁn-mnde code

The preceding example showed how to call firmware routines and specified that the
processor must be in emulation mode, running in bank $00, to call the firmware
routines. There may be other times when you want to use emulation mode from banks
other than bank $00, but you must observe other specific requirements,

When you run emulation-mode code in a bank other than bank SBD interrupls must be
disabled.

% Note: For AppleTalk applications, you must be sure that interrupts are enabled for
at least 20 milliseconds out of every 1.1 seconds. For applications using the tick
counter, interrupts must not be disabled for longer than 16,67 milliseconds or ticks
will be lost.

When you are in a bank other than bank $00 with interrupts disabled, if you mix 6502
and 65C816 instructions, the 65C816 instructions will still function as documented. But
note that all 6502-equivalent instructions behave the same as a 6502 regarding direci-
page and stack-page wrapping. The new 65C816 instructions manipulate the stack and
direct page, but do not wrap on a page boundary. Thus, you must exercise care when
using these new stack- or direct-page instructions.

Cautions about changing the environment

If you write your own subroutines (or programs) that change some part of the operating
environment, be sure that your code, at exit, puts things back the way it found them at
entry. This is especially true of stack- and zero-page changes, data-bank-register
changes, m, e, and x changes, speed-register changes, ROM-bank changes, and
language-card changes.

Stack and direct page

For Apple Il programs, the stack and the direct page (called the zero page for a 6502)
must be in their proper 6502 locations and the stack must be 256 bytes long. For
Apple 1IGS programs, stack size and stack- and direct-page locations are at the
discretion of the application. (Call the Memory M:nager 1o obtain a new zero-page
area).

When you are in native mode, you can locate the stack anywhere within bank 500, If the
stack is located in memory at other than page 1 and the processor is switched to
emulation mode, the upper half of the stack pointer will be lost (set 1o $01). When the
processar is switched back to native mode, the upper half of the stack pointer will
remain set to page $01. To avoid losing the native-mode stack pointer when switching
to emulation mode, you must temporarily save the stack pointer so it can be restored.
Sample code for saving and restoring the native-mode stack value is shown in the
examples. ;

Ernvironment for the fimware routines

15

Data bank registers and e, m, and x flags

If your subroutine changes the contents of the data bank register or the e, m, and x
fags, you should restore them to their original values. These registers affect not only
the locations to which the index registers X and Y point and the length of the A, X, and
Y registers; the contents of these registers also affect how the processor interprets its
instructions. One can easily imagine an incorrect flag or register value causing a
perfectly good program 1o fail.

Speed- and Shadow-register changes

Changing any of the bits in the Speed or Shadow register (see Chapter 3, “System
Monitor Firmware™) also affects how the system runs, (The Shadow-register bits of
interest and the speed-change bit are all accessible through the pseudoregister called
Quagmire. For assembly-language programming, you access these registers directly.
See the Apple IIGSs Hardware Reference for more information.)

Language-card changes

If you change the active bank of the language card without restoring it on exit from your
code, you again risk ruining another programmer's code, For example, the other
programmer might have executed a JSR or J5L out of some code in a ROM bank or a
particular bank of the language card. The return address of that routine is on the stack
and points to the return address within that same bank of ROM or the language card. If
your routine changes banks without restoring them to the original values upon exit, the
system will fail.

General information

This section contains other general information useful in creating 65C816 programs
for the Apple 11G5.

Apple liGs interrupts

The Apple 1G5 firmware provides improved interrupt support, very much like the
enhanced Apple Ile interrupt support. Neither machine disables interrupts for
exlended periods.

The main purpose of the interrupt handler is to support interrupts in any memory
configuration. This is done by saving the machine's state at the time of the interrupt,
placing the Apple 1IGS in a standard memory configuration before calling your
program’s interrupt handler, and then restoring the original state when your
program’s interrupt handler is finished. (See Chapter 8, “Interrupt-Handler
Firmware," for more information.)

16 Chapter 2: Notes for Programmers

Boot/scan sequence

The bool/scan sequence is initiated by selecting Startup: Scan from the Control Panel
Slots menu. When the selection is made, the Apple 11GS starts at slot 7 and tests each
slot for a boot device; the first device found is booted. The Apple 1IGS starts its scan at
the slot selected, ignoring all slots with a higher number, and works down to slot 1, If
no boot devices are in the slots, the screen displays the message shown in Figure 2-1
(the apple moves back and forth across the screen).

Check Startup Device

Figure 2-1
Boot-fallure screen

If slot 7 is enabled for an external device, the scan will proceed as just described.
However, if slot 7 is set to AppleTalk and if the startup slot is set to slot 7, the firmware
will try to boot AppleTalk. If RAM Disk or ROM Disk is selected, the SmartPort
firmware will be activated and the system will attempt to boot from the RAM disk or
ROM disk (see Chapter 7, “SmartPort Firmware").

Program bank regls}er

The 65816 program bank register wraps within a 64K bank boundary. Data retrieval and
storage, however, do not wrap within a 64K bank. This means that a program that
executes at the top of a bank continues to execute at the bottom of the same bank, even
between gpcode and operand within a single instruction. Further, data retrieval and
storage at the top of a bank simply roll over into the bottom of the next bank and
continue as if no bank had been crossed. This same operation also occurs with
indexed instructions.

Important

You must exercise care when writing code that deals directly with state-
dependent hardware, The cycle-by-cycle operations of the 65C814 emulation
mode ond the 65C816 native mode differ. This behavior has to do with indexed
instructions. In one mode, o false read occurs at a given cycle, and In the other
mode, a false write occurs, This difference can cause problems if soft switches and
hardware expect one operation and get another.

Geaneral Information

17

éxchunging the B and A registers, XBA

The A register (called the C register in native mode) is a 16-bit register used in both
native and emulation modes. In native mode, all 16 bits are used; in emulation mode,
8 bits are used for the A register and 8 bits are used for the B register (see Figure 2-2).

C (A) Native mode

i —

— e o

Emulation mode

Figure 2-2
Accumulator for emulation and native modes

Some programmers with 6502 experience might see the XBA instruction as a quick way
to save the current contents of the A register while running in emulation mode. Then
they might assume that it is appropriate to jump to system routines (that have to be
execuled from emulation mode anyway) and return, restoring the A register from B by
another XBA. However, the contents of the B register (the old 8-bit accumulator
value) will not be valid on return from any firmware routine, Thus, do not transfer
control to any system code prior to restoring the A register with the following XBA. If
you do, it is at your own risk. Although current documentation for the firmware entry
points occasionally may show that the contents of the B register are preserved, this will
not necessarily hold true for later releases of the firmware.

For example, the following code works in 8-bit mode:

XBA iPreserve A

LDA FLAG ;Do something with A
LSR iMove LSB to carry
XBA iRestore A

The following code does not work:

XBA ;:Preserve A

LOA #A

JS5R COUT ;Contrel is transferred
XBA ;Restore A

The A in the first line is not the same as the A in the fourth line.

18 Chapter 2: Notes for Programmers

Chapter 3

System Monitor
Firmware

19

This chapter describes the Apple 1IGS system Monitor firmware, a low-level,
command-driven program that lets you examine the machine state as well as create
and test small machine-language programs. A professional developer will likely use a
sophisticated assembler and debugger in addition to the system Monitor firmware,

MNote that when you use the Monitor to wrile machine-language programs, you can use
the Monitor entry points listed in Appendix C, "Firmware Entry Points in Bank 500"
to make your job easier. Also, if you use the disassembler, you will be interested in the
table of disassembler opcodes in Appendix F, “Disassembler/Mini-Assembler
Opcodes.”

The system Monitor firmware is a program that you can use (o create and test your own
machine-language programs for the Apple IIG5. From the Monitor, you can create
programs that utilize various system-resident subroutines (a summary of which is
contained in Appendix C, “Firmware Entry Points in Bank $00"), When you create
your own programs or use the Monitor to examine programs that others have created,
various feamres of the Monitor firmware assist you in your task.

The Apple IIGS Monitor provides commands that

0 manipulate memory by examining it; by entering changes in either ASCII or
hexadecimal form; by moving, comparing, or filling blocks of memory; and by
searching for specified patterns

view and change the execution environment (microprocessor registers and flags)
execute programs from the Monitor
step through and trace program execution (hooks only; no code in current ROM)

o oo o

perform miscellaneous tasks such as setting the display to inverse or normal video,
displaying or setting the time and date, redirecting input and output, performing
hexadecimal arithmetic, returning to BASIC via cold or warm start

invoke the mini-assembler
O invoke the disassembler

O

in:mking the Monitor

The system Monitor resides in read-only memory (ROM) beginning at location
$FF69, or ~151. To invoke the Monitor, you issue a Call statement to this location from
the keyboard or from a BASIC program. When the Monitor is running, its prompt
character (*) appears on the left side of the display screen, followed by a cursor. To
use the Monitor, type

Call -151 Return

The prompt character and the cursor (a flashing blank space) appear:

20 Chapter 3: System Monitor Firmware

G;nitor command synfdx

You enter all Monitor instructions in the same format: Type a line on the keyboard
and press Return. The Monitor accepts the line using the 1/0 subroutine GETLN. A
Monitor instruction can be up to 255 characters, followed by a carriage return,
(GETLN is described in Chapter 4, “Video Firmware.")

A Monitor command can include four kinds of information: memory-bank number,
addresses, data values, and command characters. You type addresses, memory-bank
numbers, and data values in hexadecimal notation.

The microprocessor in Apple 1T computers prior to the Apple IIGS could address
memory only in an address range from 0 to 65,535, The Apple IIGS, on the other
hand, can address up to 256 banks of 65,536 memory locations each. Thus, there is a
need for a memory-bank address qualifier for the Monitor commands. You will see
the complete address represented as | bank/ address), where bank is 1o be specified
as two hexadecimal digits and address as four hexadecimal digits.

When the command you type calls for an address, the Monitor accepts any group of
hexadecimal digits, automatically providing leading zeros to fill out the width of the
field of digits.

Monitor éomman'd tifpes

There are two distinct types of Monitor commands: commands that perform an
operation (such as examining or filling memory) and commands that change a
register value.

For commands that perform an operation, each command you type consists of one
command character, usually the first letter of the command name. When the
command is a letter, it can be either uppercase or lowercase. The Monitor recognizes
46 different commands. Some of them are punctuation marks, some are letters, and
some are control characters.

% Note: Although the Monitor recognizes and interprets control characters typed on
an input line, control characters do not appear on the screen.

For commands that affect the contents of a register, each command you type consists
of a value and a register name. For register names, the Apple IIGS Monitor does
require that the register name be entered using the proper case (uppercase or
lowercase). The syntax of a register-modifying command is

{value} = register}

Monitor command types

21

When you use a register-display command, the appropriate case for you to use to
modify the register contents is shown in the display for each register. Be certain to
note whether the register name is uppercase or lowercase and to use the correct case
when setting a register value.

Table 3-1 lists the Monitor commands and their syntax grouped by type. In Table 3-1
and in the rest of this chapter, the command formats often specify addresses from
which dara is obtained or to which data is sent. The source and target addresses take
the form

bank/ address

where bankis an optional bank number (one or two hexadecimal digits) and address
is the address (one to four hexadecimal digits). The bank number, if present, is
separated from the address by a forward slash (/) character. To make the command
formats more understandable, several terms are introduced here, each of which may
be used in lieu of bank/ address. Note that each of these terms uses exactly the same
format: an optional bank number and the address. The purpose of these substitute
forms is to make the command formats (especially within tables) easier to understand
at a quick glance.

The following terms may be used:

destination An address (with optional bank) that serves 25 2 data destination

Sfrom_address An address (with optional bank) at one end of a range of addresses

to_address An address (with optional bank) at the other end of a range of
addresses

start_address An address (with optional bank) at which the Monitor will start an
operation

vel An B-bit (1-byte) value specified as two hexadecimal digits

valle A 16-bit (2-byte) value specified as four hexadecimal digits

valed A value expressed as up to eight hexadecimal digits

valio A value expressed as decimal digits

mm/ dd/ vy Three B8-bit values separated by forward slashes

hh:mm:ss Three 8-bit values separated by colons

22 Chapter 3: Systern Monitor Firmware

Table 3-1
Monitor commands grouped by type

Command type Command format

Viewing and meditying memory

Display single memory location {from_address}

Display multiple memory locations {from_address) . (to_address)

Terminate memory-range display Control-X

Medify consecutive memory {destination) : (val} {val} |"literal ASCIM™)}
{ ' flip ASCIP} {val}

Move data in memory { destination} < { from_address} . { to_address)M

Verify memory contents {destination} < { from_address} . [to_address}V

Fill memory (zap) {vali<{from_address} . {to_address}Z

Pattern search (specified in four \{val}\<{from_address} . | to_address}P

ways; any or all forms may be \N{ 171231y \< | from_address) . { to_address|P

combined in a single search A\ { " literal ASCIM™ } \<{ from_address} . { to_address}P

request) \{vall6) \<{from_address} . (to_address}P

Viewing and meditying registers

Examine registers Control-E

Modify accumulator {vallG)=A

Modify X register {rallg) =X

Modify Y register {val16}=Y

Modify D register {val16}=D

Modify DBR register (bank) {val}=B

Modify program bank register {val}=K

Modify stack pointer {vall6) =8

Modify processor status {val}=P

Modify machine-state register {val} =M

Modify Quagmire register {val}=Q

Modify 16/8-bit accumulator mode {val}=m

Modify 16/8-bit index mode [val}=x

Modify native/emulation mode {val}=e

Modify language-card bank {val}=L

Modify ASCH filter mask {val)=F

{(continued)

Monitor command types 23

Table 3-1 (continued)

Monitor commands grouped by type

Command type

Command format

Miscellaneous
Begin inverse video
Begin normal video
Change time and date
Display time and date
Redirect input links
Redirect output links
Change screen display to text
Change cursor
Convert decimal to hexadecimal
Convert hexadecimal to decimal
Perform hexadecimal math
Add
Subtract
Multiply
Divide
Jump to cold-start BASIC
Jump to warm-start BASIC
Jump to user vector
Quit Monitor

Program execution and debugging
Go (begin) program in bank 500
Execute from any memory bank
Restore registers and flags
Resume execution

Perform a program step
Perform a program trace
Disassemble (list)

Enter mini-assembler

I

N

=T=mm/ dd/ yy hh: mm:ss

=T

[slot} Control-K

{ slot} Control-P

Control-T

Control-A | new _cursor_character)
= {vall0)

{valgd) =

{valtd) + | valtd)
{valad) - [val6d)
{valad) * {valGd)
{val4) _{val6d)
Control-B
Control-C
Control-Y

Q

{start_addressiG
{start_addressiX
Control-R

{start_addressiR
{start_addressis
[start_addressiT

{start_addressiL
!

24 Chapter 3: System Monitor Firmware

Monitor memory commands

The Monitor commands that directly affect memory are discussed in this section,
These include commands to examine and change memory locations, search for
specific combinations of memory contents, change memory contents individually or
in blocks, and compare memory blocks. The Monitor presents memory dumps in
both ASCIT and hexadecimal formats, You can use either notation lo enter your
requests for changes 1o memory.

When you use the Monitor to examine and change the contents of memory, the
Monitor keeps track of the address of the last location whose value you inquired about
(called the last-opened location) and the address of the location that is to have its
value changed next (called the next-changeable location). In addition, once you
have specified a bank number in one of your instructions, the Monitor continues to use
that bank number with all other instructions until you explicitly change it.

In the paragraphs that follow, the memory-contents displays are based on what you
would see if you were using the display in 80-column mode. When in 40-column
mode, the Apple I1GS Moniter dumps memaory 8 bytes per line, When in 80-column
mode, the Apple 1IGS Monitor dumps memory 16 bytes per line.

Table 3-2 lists the Monitor memory commans,

Table 3-2
Commands for viewing and modifying memory
Command fype Command format
Display single memory location {from_address)
Display multiple memory locations {from_address} . {to_address)
Terminate memory-range display Control-X
Modify consecutive memory {destination) : {vall {(val} ("literal ASCIP}
(" flip ASCII') (val)
Move data in memory | destination) < { from_address) . | to_addressIM
Verify memory contents { destination} <{ from_address} . { to_address}V
Fill memory (zap) {val} < {from_address) . {to_address)Z
Pattern search (specified in four \ {val)\<{from_address) . | to_address}P
ways, any or all forms may be \{ " 1238 }\< | from_address) . | to_address|P
combined in a single search WA " literal ASCIM) \<{ from_address} . | to_address}P

request) \{val16} \<{ from_address} . {to_addressTP

Manitor memory commands

25

Examining memory
The syntax required to display a single memory location is
| bank/ address) Return

If the Monitor is already examining the bank desired, you don't have to include the
bank number in the instruction. Simply type the address and press Return. However, if
you're not sure which bank the Monitor is in, include the bank number as shown in the
example. The Monitor responds with the bank and address you typed

(banksaddress), a colon, and the hexadecimal contents of the location. For
example, to examine memory location hexadecimal $1000, next 1o the Monitor
prompt () type

*00/1200 Return

The bank and address are displayed as well as the contents of address $1000:
00/1000:20-

4 Note: Dollar signs ($) preceding addresses that appear in running text signify that
the addresses are in hexadecimal notation; however, dollar signs are ignored by
the Monitor and must be omitted when typing instructions. If location $1000 had
contained ASCII code, the ASCII equivalent would be displayed on the far right of
the screen, as the following example shows:

=1000 Return

{Notice that the bank address was not entered because you know that you are in bank
£00.) The result is

Das1000:41-4A

& Note: ASCII codes are decoded in the rightmost 8 spaces of your display. Printable
ASCII characters are displayed as normal characlers; nonprintable characters are
displayed as periods (.). If you are using the Monitor in 80-column mode, the
ASCII characters will 1ake up the rightmost 16 spaces instead of 8, and 16 sets of
hexadecimal digit pairs corresponding to the byle values stored in the displayed
mMemory range.

When you change the contents of memory, the Monitor saves the address of the lasl
location in which you changed the contents and the address af the next location to be
changed—in other words, the last-opened location and the next-changeable
location.

26 Chapter 3; Systern Monitor Firmware

ﬁmlnin-g consecutive memory locations

You may want to examine a block of memory locations, such as from $1000 to $1007.
simply type the starting address, a period, and the ending address and then press
Return:

*1000.1007 Return
The contents of the memory locations are displayed as follows:

/lon0:41 42 43 44 45 55 DO 00 -ABCDED, ,

Il you type a period (.) followed by an address and then press Return, the Monitor
displays a memory dump: the data values stored at all the memory locations from the
one [ollowing the last-opened location to the location whose address you typed
following the period. The Monitor saves the last location displayed as both the last-
upened location and the next-changeable location. In these examples, the amount of
dara displayed by the Monitor depends on the difference between the address of the
last-opened location and the address after the period.

IS LA00:41=A

*, 1032 Return

GCAl0Zi:41 42 43 44 45 55 00 00 -BCDED. .
0G/1208:51 52 53 54 -PQRS

-

When the Monitor performs a memory dump, it starts at the location immediately
fullowing the last-opened location and displays that address and the data value stored
there. It then displays the values of successive locations up to and including the
location whose address you typed, but shows only up to 8 (or 16) values on a line.
When it reaches a location whose address is a multiple of 8 (or 16), that is, one whaose
address ends with an 8 (or if 16, an address that ends with a), it displays that address
as the beginning of a new line and then continues displaying more values.

if you have selected a large memory range to display and you wish 1o halt the display
and resume entering other Monitor commands, press Control-X. This terminates the
memory-range display.

After the Monitor has displayed the value at the location whose address you specified
in the command, it stops the memory dump and sets that location as both the last-
opened location and the next-changeable location. If the address specified in the
input line is less than the address of the last-opened location, the Monitor displays
only the address and the value of the location following the last-opened location.

Monltor memory commands

27

Chqnging memory contents

The previous section showed you how to display the values stored in the Apple 11GS
memory system; this section shows you how to change those values. You can change
any location in RAM and you can also change the soft switches and output devices by
changing the contents of the memory locations assigned to them.

Warning

Use these commands carefully, If you change the contents of memory in any
area used by the Apple liss firmware or Applesoft, you may lose programs or data
stored In mermory. You can find a map showlng the memaory use by various parts
of the system software in the Apple lles Hardware Reference.

Changing one byte

Previous commands kept track of the next-changeable memory location; other
memory commands make use of that location. In the next example, you open location
$1000 and type a colon (:) followed by a value:

*1000 Return
00/1000:50 =P
*:54 Heturn

This entry changes the contents of the opened location to the value you requested. To
verify the changes, again type

*1000 Retum
The Monitor now displays

02/1000:54 =T

-

You can combine opening a location and changing its contents into a single operation
by specifying the address, a colon, and the contents on a single command line:

*1000:41 Rewurn

As before, you can verify that the system obeyed your command by typing
*1000 Retum

The Monitor now displays

00/1000:41 = A

28 Chapter 3: Systern Monitor Firrmware

You can change a byte to an ASCII code using the character instead of the numeric
value. Use the same syntax as before, but enclose the ASCII characters in double
quotation marks, as follows:

*1000:"a"

To verify that the location has been changed, type

*1000 Return

Again, the bank/address and location contents are displayed.

00/1000:El=-a

Note that when you change the contents of a programmable memory location, the new
value that you provide entirely replaces the value that was in that location to begin

with. This new value will remain there until you replace it with another value or until

you turn off the computer. Further information about this operation is provided in the
section "ASCII Filters for Stored Data” later in this chapter. (If you are using the ASCII
input mode, the filter will affect the data that you have entered.)

Changing consecutive memory locations

You don't have to type a separate command with an address, a colon, a value, and a
Return for each location you want to change. You can change the values of many
memory locations at the same time by typing only the initial address and a colon,

then all the values separated by spaces, and then Return. The only limitation is that the
total length of the string, including the address, colon, all of the values and spaces,
and the Return, must not exceed 255 characters. Using this method, you could change
100 or more locations in a single entry line. Note that you don't need 1o type leading
zeros, a feature that provides even more possible data entry locations in a single
command line,

The Monitor stores the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string of values, it takes
the location following the last-changed location as the next-changeable location.
Thus, you can continue changing consecutive locations without typing an address on
the next input line by simply typing another colon, a space, and more values. In the
following examples, you first change some locations and then examine them to verify
the changes.

*1000:56 57 58 59 60 61 62 63 64 65 Return

The contents of locations $1000 through $1009 have been changed, as you can see by
- examining those locations:

1000.1003 Return

Monitor memory commands

29

As before, the memory-bank number and the starting memory address precede the
values you typed, and the ASCII values are displayed at the right

03/1000:56 57 58 59 60 Bl 62 63 B4 BE-VWXY'abcde

w

In the next example, you use the colon o continue a data entry, as noted in the
preceding description:

*1000:41 42 43 Retumn

*:3130 32 33 Retum

*1000.1006 Return

00/1000:41 42 43 30 31 32 33-ABCO123

Note that you can enter data in either single-byte (one or two hex digits) or double-
byte (three or four hex digits) or triple-byte (five or six hex digits) or quadruple-byte
(seven or eight hex digits) units. When a double-byte quantity is entered, the Monitor
stores the bytes in low-byte, high-byte sequence (the reverse of the way you entered
them), as demonstrated in the example (3130 entry) above. This is useful when you are
specifying address entries for the mini-assembler. You will find more of this kind of
entry demonstrated in the section "The Mini-Assembler” later in this chapter.

ASCIl input mode

You can enter ASCII data in two different ways. One way is called literal ASCIL the
other way is called flip ASCII.

% Note: The ASCII filter will affect the final form of your data when ASCII input mode
is used. See the section "ASCII Filters for Stored Data” later in this chapter for more
information.

To enter data in literal ASCII format, type the character string you wish to enter
between a pair of double quotation marks. The characters you enter are stored in
ascending order in the same sequence in which you typed them. In some cases, you
might want to store the characters in reverse order, with the last character stored at the
lowest memory address. You use flip ASCII for this entry mode. Flip ASCII is entered
by using single quotation marks in place of double quotation marks. Note, however,
that flip ASCII is limited to four characters maximum. The following example
demonstrates literal ASCII data entry:

1000:*ECHO™ Return
1000.1003 Return
Q0/1000: €5 C3 C8 CF = ECHD

The next Exahpie demonstrates flip ASCIT data entry:

1000; "ECHO" Retum
1000.1003 Return
0o/1000; CF CB €3 C5 - OHCE

30 Chapter 3: Systern Moniter Firmmware

ASCIl filters for stored data

When you perform any manipulation of ASCII code, you must consider the literal
ASCY) format of the stored data. For example, do you want the data to be stored in
ASCH format with the most significant bit set (to be compatible with the I/O firmware
for display purposes) or directly in true ASCII format, where what you type exactly
fallows the ASCII standard? The format can be changed using any filters provided by
the Monitor. The filter can be any hex value from $00 {maximum filtering) 1o $FF (no
filiering, that is, all source bits pass through the filter unmodified).

The filter formats are as follows:

Entry Filtar Format of stored data

mabrdefghijkl™ FF (default filter) E1 E2 E3 E4 E5 E6 E7 EB E9 EA EB EC
7F 61 62 63 64 65 66 67 68 69 6A 6B 6C
3F 2122232425262728 2024 2B 2C

The syntax for changing filters is

|filter-value) =F Return

For example, if you type

=7 HReturn

the system uses the 7F filter format.

This means that when you search for any pattern in memory, you must know which
format is used. If FF is used, abe appears in hex as E1 E2 E3; if 7F is used, abc appears
15 At 62 63. Thus, if you perform a pattern search for E1 E2 E3 and the format used was
TF, you will not find the correct pattern.

The input ASCII character is ANDed with the filter value and then stored in the search
buffer.

}Tmring data in memory

You can copy a block of data stored in a range of memory locations from one area in
memory 1o another by using the Monitor's Move (M) command. To move a range of
memory, you must tell the Monitor both where the data values are now situated in
memory (the source locations) and where the data values are (o go (the destination
lncations). You give this information to the Monitor by providing three addresses: the
address of the first location in the destination and the addresses of the starting and
ending locations within the source range. You specify the starting and ending
addresses of the source range by separating them with a period. You separate the
destination address from the range addresses with a less-than character (<), which you
ray think of as an arrow pointing in the direction of the move. Finally, you tell the
Manitor that this is a Move command by typing the letter M (in either lowercase or
uppercase).

Menitor memaory commands

31

The format of the complete Move command looks like this:
i destination) < from_address) . {to_address\M

To move data from $1000 through $1009 to locations beginning at $2000, type the
destination, the starting address, and the ending address followed by the letter M.
Naote that as you type the address values, the words in braces and the braces themselves
are replaced by the hexadecimal addresses that you wish o use. The example uses
bank $00 as both the source and the destination. You can, however, specify the
complete bank address within either of the source addresses or in the destination
address, because everywhere that the Monitor requires an address, it will also find the
combination of (bank/address acceptable as well.

*2000<1G00.10094 Return

&

Now examine the data you moved by using the examine procedure. Type the starting
address and the ending address and press Return;

*2000.200% Return

The data returned to the display looks the same as it did when you examined locations
51000 through $1009:

00/2000:CF CB C3 C5 60 61 62 63 64 65-0HCE'abede

The Monitor moves a copy of the data stored in the source range of locations to the
destination locations. The values in the source range are left unchanged. The Monitor
remembers the last location in the source range as the last-opened location and the
first location in the source range as the next-changeable location. If the second
address in the source range is less than the first, then only one value (that of the first
location in the range) will be moved.

If the destination address of the Move instruction is inside the source range of
addresses, then strange (and sometimes wonderful) things happen: The locations
between the beginning of the source range and the destination address are treated as a
subrange, and the values in this subrange are replicated throughout the source range.
The section "Special Tricks With the Monitor” later in this chapter provides an
interesting application of this feature.

32 Chapter 3: Systern Monitor Firmmware

Comparing data in mem;:ry

You can use the Verify (V) command to compare two ranges of memory using the
same format you use to move a range of memory from one place to another. In fact, a
Verify command can be used immediately after a Move command 1o make sure that
the move was successful.

The Verify command, like the Move command, needs a range and a destination. The
syntax of the Verify command is identical to the Move command, except that you type
3 V in place of an M:

tdestination_address) < {starting address) . |ending address)v

The Monitor compares the values in the source locations with the values in the
locations, beginning with the destination address, If any values don't maich, the
Monitor displays the first address at which a discrepancy is found and the two values
that differ. If you enter the example shown for the Move instruction and then change
one byte at the destination, you can use the Verify command to find the discrepancy.
Change the first location to hex 41 (it was hex 56) and then use the Verify command:

*2000:41 Return
*2000<1000.1009V Return

If there are no discrepancies, you will not get a display. In this example, because you
will have caused a discrepancy, the following is displayed:

§2000

00/1000:56 (41)
1000

Location $1000 contains 56; location $2000, however, contains 41,

The Verify command leaves the values in both ranges unchanged. The last-opened
location is the last location in the source range, and the next-changeable location is
the first location in the source range, just as in the Move command. If the ending
address of the range is less than the starting address, the values of only the first
locations in the source and destination will be compared. Like the Move command,
the Verify command also does strange things if the destination address is within the
source range, Again, see the section “Special Tricks With the Monitor" later in this
chapter.

Monitar memory commands

33

Filing a memory range

You can fill a memory range with a specific value by using the Monitor Zap (Z)
command. You tell the Monitor where and how to zap memory by providing three
pieces of information: the value to fill, the starting address, and the ending address.
You separate the value from the starting address by using a less-than character (<).
You separate the beginning and ending addresses of the range with a period. The
syntax for Zap is

{value) < | starting address} . [ending address) 2 Return

When Zap operates, the value you have selected is filled into the entire range,
including the starting and ending addresses.

Searching for bytes in memory

The Pattern Search (P) command allows you to search for one or more bytes
(hexadecimal values, ASCII characters, or 2 combination of the two) in a range of
memory. The syntax of the pattern search instruction is as follows:

= {value(s) or "lteral ASCII" or ' flip ASCIT* }\<{starting address, ending address|?

The byte values are entered end to end with no intervening spaces, This format is
required by the Pattern Search command because you are looking for a string of
values, Note that you must enter leading zeros. For example, a search for the string of
characters 0D followed by 0A between locations 1200 and 1400 would be entered as

*%00 0AN<120D0.1400P Return

Il you are looking for a string of characters, you can enter the characters delimited by
double quotation marks as shown here:

*\"Mr. Goodbar"\<1200.1400F Return

If the pattern is found, the beginning location is displayed. For example, if the pattern
is located with its first byte at location §1300, the following is displayed:

00/1300:41 -A

a4 Chapter 3: Systern Moniter Firmware

Registers and flags

The Apple IIGS system uses a number of registers and control flags (bits) to perform its
various functions. Table 3-3 lists these registers and flags.

Toble 3-3

Registers and flags

Register Flag

A Accumulator M Machine state

Y Index register Q0 Quagmire siate

X Index register m Accumulator mode
5 Stack pointer x Index mode

D Direct zero page e Emulation mode

P Processor status L Lanpuage-card bank
B Data bank

K FProgram bank

The A, X, and Y registers are the workhorses of the assembly-language programmer,
The P register contains all of the system status flags. The D register is the 65816 direct-
page register that controls the placement of the zero page of the processor. The §
register is the stack pointer. The K register contains the upper 8 bits of the program
wounter because the 65816 operates anywhere in a 24-bit address space.

In books that describe programming for the 65816, the upper & bits of the accumulator
are scmetimes called the B register, These programming books also refer to the 16-bit
accumulator as the €' register, the program bank register as PBR (the upper 8 bits of the
program counter), and the data bank register as DBR (the upper 8 bits applied to the X
and Y registers). For convenience, the Monitor renames these registers as follows:

¢ The Monitor B register display shows the DBR contents.
 The Monitor K register display shows the PBR contents,

0 ‘The Monitor A register display shows the 16-bit accumulator contents, whether 8 or
16 bits.

O The Monitor does not separately display the upper 8 bits of the accumulator.

Note that the Monitor does not display the current contents of the program counter
regisier. If you want to step or trace a program, you must create your own separate
routine to display the program counter contents along with these other registers.

Registers and flags

35

The M register represents the machine state. The individual bits of this register are
described in the summary at the end of this chapter. You can find an in-depth
description of the meaning of these bits in the Apple IIGS Hardware Reference.

The Q register, also called the Quagmire register, is not actually a hardware
machine register, but a pseudoregister made up of contral bits located elsewhere in
the system. One bit (bit 7), selects high-speed operation. (Earlier Apple 11 series
computers operated only at 1 MHz; the Apple IIGS can operate either at 1.0 MHz or 2.8
MHz.) Bits 6 to 0 enable and disable various shadowing options, Shadowing, when
enabled, writes the same data to banks $00 (or $01) and $ED {or 3E1) in selected areas,
as defined by the individual shadowing bits.

The environment

The complete set of registers and flags is called the environment When your program
encounters a break or another kind of interrupt condition, this environment is saved
by the Monitor, When you issue a command to resume execution, the environment is
restored as it was when the interrupt occurred. Your program resumes as though
nothing had happened. If you change the contents of the registers and flags that are
displayed, then the changes become the new environment that your program
encounters when it again begins to execute. You also change the registers and flags o
set up a new environment for a program that you might write and execute using the Go
command, discussed later in this chapter.

Examining and changing reglstersiund flags

The microprocessor's register contents change continuously during execution of a
program, such as the Monitor firmware. Using the Monitor, you can see what the
register contents were when you invoked the Monitor or when a program you were
debugging stopped at a Break (BRK) or a COP instruction or as a result of an
unserviced hardware abort condition.

36 Chapter 3: Systern Moniter Firmware

Table 3-4 lists the commands that relate to system registers.

Table 3-4

Commands for viewing and modifying raglsters
Command type Command format
Examine registers Control-E
Modify accumulator {vallGl=A
Modify X register {vallG)=X
Modify Y register {vallG} =Y
Modify D register {vall6}=D
Medify DBR register (bank) {val}=B
Modify program bank register {val}=K
Modify stack pointer {vallG}=5
Medify processor status {val}=P
Modify machine-state register {vall =M
Medify Quagmire register [val}=0Q
Modify 16/8-bit accumulator mode {vall=m
Medify 16/8-bit index mode {val)=x
Modify native/emulation mode {val}=e
Modify language-card bank {val} =L
Modify ASCIT filter mask {val}=F

When you call the Monitor, it stores the contents of the microprocessor's registers and
flags in memory. The registers and flags are stored in the order A, X, Y, S, D, P, B, K,
M, Q L, m, x, and e. When you give the Monitor a G instruction, the Monitor loads
the registers in this same sequence before it executes the first instruction in your
program. The m, x, and e flags are part of the processor status register (P). However,
because the registers and flags are reloaded in the sequence shown, whatever value you
have placed in m, x, and e will override any such value you might have placed in P.

@ Note: If you set the value of the e flag to 1, the 65816 automatically sets the value of m
and x to 1. This puts the processor into 6502 emulation mode, forcing it to have an
8-bit accumulator and index registers. Additionally, the upper 8 bits of the stack
peinter are forced to a value of 01.

Press Control-E and then Return to invoke the Monitor's Examine instruction. This
action displays the stored register values and flags and sets the location containing the
contents of the A register as the next-changeable location. The example follows:

*Control-E Return
The registers and flags are displayed as follows:

You can change the values in any of these locations by typing the new value, an equal
sign (=), and the letter for the register or flag to affect and pressing Return. In the
following example, the first two locations are changed, and the registers and flag bits
are again displayed to verify the change.

Registers and flags

a7

Change A to the value 1234:

*1234-5 Return

Change X to the value 006A:

*Coeh=X Return

Execute the Examine instruction:

*Control-E

The registers and flags are displayed to verify the changes:

A=1234 X=006A Y-C3CR 5=01F4 D=0000 P=00 B=0D K=~00 M=0C Q=80 L=l m=1 x=1 e=1

€ Note: If you are using the Monitor to debug a program running in 6502 emulation
mode, the values for the microprocessor registers will revert to their 6502
equivalents. For example, the A, X, Y, and S registers will be able to hold only 8
bits each. Even if you specify (and display) a value that exceeds 8 bits, only the low &
bits of the value you enter will be used when the system resumes 6502 emulation.

Summary of regisier- and flag-modification commands

The following commands can be used to modify the registers and flags. Note that all of
these are case sensitive. To change the register you want to change, you must use the
case (uppercase or lowercase) shown in the registers and flags display. The case of the
letters is the only way the Monitor can distinguish between flags and registers in this
situation (for example, compare X and x and M and m in the following lisD).

Change to Syntax

Accumulator {valla)=A

X register {vall6)=X

Y register {valla) =Y

D register {ralla)=D

DER register (bank) {val}=B

Program bank register {val}=K

Stack pointer {valla) =58

Quagmire register {val}=Q

Machine register fvall=M

m flag {val}=m (val = 0 for 16-bit accumulator,
val = 1 for 8-bit accumulator)

x flag ' {val}=x (val = 0 for 16-bit index registers,
val = 1 for 8-bit index registers)

e flag {val}=e (val = 0 for native mode,

val= 1 for 6502 emulation mode)
Filter value for ASCII modes {val}=FF (val = any value from $00-$FF;
default pal = FF)

Language-card bank {vall=L (val=0or 1)

28 Chapter 3: Systemn Monlter Firmware

Miscellaneous Monitor commands

Other Monitor commands enable you to change the video display format from
normal to inverse and back and to assign input and output to accessories in expansion
slots. Table 3-5 lists these miscellaneous commands.

Table 3-5

Miscellanecus Monitor commands

Command type Command foermat

Begin inverse video I

Begin normal video N

Change time and date =T=mm/dd/yy hh:mm: s

Display time and date =T

Redirect input links { slot} Control-K

Redirect output links { slot} Control-P

Change screen display to text Control-T

Change cursor Control-A {new_cursor character}

Convert decimal to hexadecimal ={valli}

Convert hexadecimal to decimal {valGd)=

Perform hexadecimal math
Add {valtd) + | valGd)
Subtract (valod) - {valod)
Multiply [valed) * (val64]
Divide {val6d) _{(val64)

Jump 1o cold-start BASIC Control-B

Jump to warm-start BASIC Control-C

Jump 10 user vector Control-Y

Quit Monitor Q

Inverse and normal display

You can control the setting of the inverse/normal mask location used by the COUT
subroutine from the Monitor so that all of the Monitor’s output will be in inverse
format. The COUT routine is described in Chapter 4, “Video Firmware." The Inverse
command (I) sets the mask so that all subsequent input and output are displayed in
inverse format,

*T Return
To switch the Monitor's output back to normal format, use the Normal command (N).

*N Return

Miscellaneous Monltor commands

a9

Worklng with time and date

You can display or set the time and date directly from the Monitor. (Normally, time
setting is handled through the Control Panel, which is described in Appendix G, “The
Control Panel.”)

Here is the format for displaying the time and date:
=T Return

If you want to set the time and date, use the following format (for decimal number
entry):

=T=nn/dd/yy hh:mm:ss

where nn is the month (range 1-12), dd is the day (range 1-31), 3y is the year (range
0-99), h# is the hour (range 0-23), mm is the minutes (range 0-50), and ss is the
seconds (range 0-59). The delimiters slash (/) and colon (:) are shown as the
suggested format because these delimiters conform to what a user normally expects to
see. However, any delimiter other than an apostrophe (') can be used to separate the
values entered.

Radirecting input and output

The Printer command, activated by Control-P, diverts all output normally destined
for the screen to an interface card in a specified expansion slot, from 1 to 7. There
must be an interface card in the specified slot or you will lose control of the computer
and your program and variables may be lost. The format of the command is

{ slot-number) Control-P

A Printer command to slot 0 will switch the stream of output characters back to the
Apple 11GS video display.

Don't issue the Printer command using a slot value of 0 to deactivate the 80-column
firmware, even though you used this command to activate it in slot 3. The command
works, but it just disconnects the firmware, leaving some of the soft switches set for 80-
column display.

In much the same way that the Printer command switches the output stream, the
Keyboard command substitutes the interface card in a specified expansion slot for the
normal Apple IIGS input device, the keyboard. The format for the Keyboard
command is

(slot-number} Control-K

Specifying slot number 0 for the Keyboard command directs the Monitor to accept
input from the Apple 11GS keyboard.

The Printer and Keyboard commands are the equivalents of BASIC commands PR#
and IN#,

40 Chapter 3: Systerm Monitor Firmware

Changing the cursor character

You can change the Monitor cursor from a flashing blank space to whichever character
you wish. Here is the format for changing the cursor:

Control-~ [mew cursor character)
Here is an example that sets an underscore () as your new cursor character:

*Cantrel-*_ Retumn

The underscore now appears as the cursor character. To restore the original cursor,
specify that the new cursor is a delete character.

Converting hexadecimal and decimal numbers

You can convert up to 8-digit hexadecimal numbers to decimal values. The syntax is
(value} - | Return)

For example, type

*100F= Return

Hexadecimal $000F is convered to decimal 15:

15 |+15}

E]

You can also convert a decimal number 1o a hexadecimal number, The syntax is as
follows:

=|value} Return

For example, type

*=0015 Return

Decimal 0015 is converted to hexadecimal $0000000F:

§00CO0CoE

Miscallanecus Monitor commancs

41

Hexadecimal math

You can use the Monitor to perform hexadecimal math. The Apple IIGS Monitor can
handle 32-bit addition, subtraction, multiplication, and division operations. The
syntax for these operations is shown below. Note that multiplication shows a 64-bit
result, and division displays both the remainder and the quotient. Notice also that
bank-address information provided in the entry of the data is ignored during the
calculations. If you wish to actually perform address calculations, you can convert
your bank and address into a 6-digit hexadecimal quantity and use that for the
caleulations (just leave out the forward slash).

Operation Syntax

Addition {valc4) +{val64} Return

Subtraction {val6d) - {valG4) Return

Multiplication |valG4} * [val64] Return

Division {val64)_{val64} Return (An underscore character rather than

the traditional forward slash is used to specify division.)
Here are a few examples:

*1234+1234 Return

—-» 500002468

*1234+34 Return

=» 500001258

*34+1 Return

=» 500000035

*1112=-2222 Return

=>» SFFFFEEFOQ

12=3456789 Return

=» SO000000003RAE14T7A2
*12345678_120 Return

R=> 500000008 Q-> $00102ERS
*0/23+1/23 Return

=» 300000046 (Bank-address information was ignored.)

42 Chapter 3: Systern Monitor Firmware

A Tool Locator call

From the Monitor, it is possible to call the toolbox routines. However, the toolbox
routines will most ofien be used by programs rather than by keyboard access through
the Monitor. The syntax for the Tool Locator call is listed in detail in the summary at
the end of this chapter. If you wish to use tool calls from the Monitor, see the

Apple 11Gs Toolbox Reference for details about the tool numbers and parameter
tequirements for the tool of your choice,

As an example of a possible use, here are two sample tool calls. The first call, once
entered, allows you to type a line of text, followed by a carriage return. This first call
returns a count, in hexadecimal, of the number of characters you typed. You will then
store the number you receive into a memory location and call ancther tool that will
reirieve and type the characters to the display.

This first tool call reads the keyboard, storing successive characters in locations
beginning in memory location $012080 until you type a carriage return character,

\C20D0D01 20 81 0OFF 0 8D 0 1 24 c\U Rewrn

After you input some text and press Return, the Monitor responds with a hex count of
the number of characters you typed. If you typed

THESE ARE MY LETTERS. Return
the Monitor responds

*15

Now type the following line after the Monitor prompt (o store that number you
received into memory to set up for the tool to type the text. The hex value that you
enter in this memory-modification command is the same value that the tool returned
as your character count,

01/2080:15 Return
The lollowing command asks a tool 1o type the text:

‘00120 BO 1C C\U Return

Back to BASIC

Use the BASIC command, Control-B, to leave the Monitor and enter the BASIC that
was active when you entered the Monitor. Normally, this is Applesoft BASIC, unless
you deliberately switched to Integer BASIC. Note that if you use this command, any
program or variables that you had previously entered in BASIC will be lost. If you want
1o reenter BASIC with your previous pregram and variables intaet, use the Continue
BASIC command, Control-C.

If you are using DOS 3.3 or ProDOS®, press Control-Reset or use the Monilor Q (Quith
command to return to the language you were using with your program and variables
intact.

Miscellaneous Monitor commands

43

Special tricks with the Monitor

This section describes some more complex ways of using the Monitor commands,
including

0 placing multiple commands on a single command line
o filling memory with a multiple-byte pattern
O repeating commands

1

creating your own commands

Multiple commands

You can put as many Moenitor commands on a single line as you like, so long as you
separate them with spaces and the total number of characters in the line is less than
254. Adjacent single-letter